scispace - formally typeset
Journal ArticleDOI

Transforming growth factor-beta regulation of immune responses.

TLDR
This review highlights the findings that have advanced the understanding of TGF-beta in the immune system and in disease.
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.

read more

Citations
More filters
Journal ArticleDOI

IL-17 and Th17 Cells.

TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Journal ArticleDOI

Cellular and molecular mechanisms of fibrosis.

TL;DR: Current understanding of the cellular and molecular mechanisms of fibrogenesis is explored and components of the renin–angiotensin–aldosterone system (ANG II) have been identified as important regulators of fibrosis and are being investigated as potential targets of antifibrotic drugs.
Journal ArticleDOI

TGFβ in Cancer

TL;DR: The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.
Journal ArticleDOI

Transforming growth factor-beta induces development of the T(H)17 lineage.

TL;DR: This article identified transforming growth factor-beta (TGF-beta) as a cytokine critical for commitment to Thelper-17 (T(H)17) development, which is required for host protection against a bacterial pathogen, Citrobacter rodentium.
Journal ArticleDOI

The biology and function of fibroblasts in cancer

TL;DR: Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components and have a role in creating extracellular matrix structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy.
References
More filters
Journal ArticleDOI

Innate Immune Recognition

TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Journal ArticleDOI

Inflammation in atherosclerosis

TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Journal ArticleDOI

TGF-beta signal transduction.

TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Journal ArticleDOI

Inflammation, Atherosclerosis, and Coronary Artery Disease

TL;DR: The evidence is recounted that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree.
Journal ArticleDOI

Interleukin-10 and the interleukin-10 receptor.

TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Related Papers (5)