scispace - formally typeset
Search or ask a question

Showing papers on "Acrosome reaction published in 2019"


Journal ArticleDOI
TL;DR: Human semen contains several trace elements which are necessary for reproductive health, normal spermatogenesis, sperm maturation, motility and capacitation, as well as normal sperm function, and measurement of these trace elements in men with idiopathic infertility is necessary.
Abstract: Human semen contains several trace elements such as calcium (Ca), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn) and selenium (Se) which are necessary for reproductive health, normal spermatogenesis, sperm maturation, motility and capacitation, as well as normal sperm function. In this review, the potential role of these trace elements in male reproductive health, normal function of spermatozoa and fertility potency were considered. We selected and reviewed articles that considered crucial roles of trace elements in human sperm function and fertility. Ca is essential for sperm motility and its hyperactivation, sperm capacitation and acrosome reaction, as well as sperm chemotaxis. Sodium (Na) and potassium (K) are involved in sperm motility and capacitation. Mg is necessary for normal ejaculation, spermatogenesis and sperm motility. Zn is one of the most significant nutrients in human semen. Seminal deficiency of Zn can be associated with delayed testicular development, impaired spermatogenesis, deficiency of sex hormones, oxidative stress and inflammation, and apoptosis. Se is another significant element which has antioxidative properties and is essential for spermatogenesis and the maintenance of male fertility. Mn is a potent stimulator for sperm motility; however, increased level of seminal plasma Se can be toxic for sperm. Like Se, Cu has antioxidative properties and has a positive effect on sperm parameters. Decreased level of these trace elements can negatively affect human reproductive health, semen quality, sperm normal function and as the result, fertility potency in men. Measurement of these trace elements in men with idiopathic infertility is necessary.

61 citations


Journal ArticleDOI
TL;DR: Findings provide evidence that: 1) sperm can still receive vesicle-derived cargo after ejaculation; 2) sperm motility and ability to undergo capacitation can benefit from exosomal transfer; and 3) semen quality is affected by male tract exosomes.

60 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of MMP collapse caused by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on acrosin activity, AR, DNA fragmentation, reactive oxygen species (ROS) production, and ATP content in human spermatozoa were evaluated in vitro.
Abstract: Study question In addition to sperm motility, which major biological characteristics of sperm fertility potential are associated with mitochondrial functionality? Summary answer Sperm fertilization capacities, including acrosin activity, acrosome reaction (AR) capability and chromatin integrity, are related to the mitochondria functionality as evaluated by the mitochondrial membrane potential (MMP). What is known already Correlative studies suggest a potential role of sperm MMP in predicting sperm fertilization ability and ensuring sperm motility. However, researches characterizing other determinants of sperm fertility potential according to MMP are lacking. Study design, size, duration The sperm MMP was examined in 627 young college students in the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study in 2014. Among these participants, acrosin activity and chromatin integrity were measured in 378 and 604 subjects, respectively. These two determinants of sperm fertility potential were first compared among high-, moderate- and low-MMP groups in the college population. The effects of MMP collapse caused by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on acrosin activity, AR, DNA fragmentation, reactive oxygen species (ROS) production, and ATP content in human spermatozoa were evaluated in vitro. Participants/materials, setting, methods The sperm MMP was evaluated by using JC-1 staining, acrosin activity was measured using a N-α-benzoyl-dl-arginine-para-nitroanilide HCl (BAPNA) substrate method, the integrity of chromatin represented by DNA fragmentation index (DFI) was measured by sperm chromatin structure assay (SCSA), AR was evaluated with chlortetracycline staining, and intracellular ROS production was evaluated with dihydroethidium. ATP concentration was determined with luciferase. Measurements were performed by spectrophotometry or flow cytometry. Main results and the role of chance Nonparametric analysis revealed significantly higher acrosin activity and a lower DFI in subjects with moderate or high MMP compared to those with low MMP. After adjustment for potential confounders, increases of 7.9 and 44.4% in sperm acrosin activity and deceases of 12.0 and 25.2% in the sperm DFI were found in the moderate- and high-MMP groups, respectively. The MMP dissipation induced by CCCP caused significant declines in acrosin activity and AR capacity and increased DFI in human spermatozoa. Moreover, sperm MMP dissipation induced ROS overproduction and decreased ATP content. Limitations, reasons for caution We cannot exclude a contribution of leukocytes to ROS production and no size gating was used to exclude these cells from the FACS measurements. No simultaneous live-dead staining was done and a contribution of dead sperm to the MMP and acrosome assays cannot be excluded. Wider implications of the findings Mitochondrial functionality might be necessary to maintain sperm acrosin activity, AR and chromatin integrity. Tests of mitochondrial functionality should be developed and used independently of or in addition to conventional semen parameters in infertility diagnosis or risk-assessment processes. Study funding/competing interest(s) This study was supported by the Key Program of the National Natural Science Foundation of China (No. 81630087) and the National Natural Science Foundation of China (No. 81703254). None of the authors have any competing interests to declare.

44 citations


Journal ArticleDOI
TL;DR: The findings revealed the benefit of magnetic nanoselection for high-throughput targeting of damaged sperm, for removal and rapid and effortless enrichment of semen doses with highly motile, viable, and fertile spermatozoa.
Abstract: Advances in nanotechnology have permitted molecular-based targeting of cells through safe and biocompatible magnetic nanoparticles (MNP). Their use to detect and remove damaged spermatozoa from semen doses could be of great interest. Here, MNP were synthesized and tested for their ability to target apoptotic (annexin V) and acrosome-reacted (lectin) boar spermatozoa, for high-throughout retrieval in a magnetic field (nanoselection). The potential impacts of nanoselection on sperm functions and performance of offspring sired by sperm subjected to nanoselection were determined. Fresh harvested and extended boar semen was mixed with various amounts (0, 87.5, and 175 μg) of MNP-conjugates (Annexin V-MNP or Lectin-MNP) and incubated (10 to 15 min) for 37 °C in Exp. 1. In Exp. 2, extended semen was mixed with optimal concentrations of MNP-conjugates and incubated (0, 30, 90, or 120 min). In Exp. 3, the synergistic effects of both MNP-conjugates (87.5 μg – 30 min) on spermatozoa was evaluated, followed by sperm fertility assessments through pregnancy of inseminated gilts and performance of neonatal offspring. Sperm motion, viability, and morphology characteristics were evaluated in all experiments. Transmission electron microscopy, atomic force microscopy, and hyperspectral imaging techniques were used to confirm attachment of MNP-conjugates to damaged spermatozoa. The motility of nanoselected spermatozoa was improved (P 0.05). The findings revealed the benefit of magnetic nanoselection for high-throughput targeting of damaged sperm, for removal and rapid and effortless enrichment of semen doses with highly motile, viable, and fertile spermatozoa. Therefore, magnetic nanoselection for removal of abnormal spermatozoa from semen is a promising tool for improving fertility of males, particularly during periods, such as heat stress during the summer months.

43 citations


Journal ArticleDOI
TL;DR: This review focuses on epididymal proteins demonstrated to have an effect on sperm functions, such as motility, capacitation, acrosome reaction, sperm-zona pellucida binding and sperm-egg binding, as well as on embryonic development.
Abstract: The epididymis is necessary for post-testicular sperm maturation as it provides the milieu required for spermatozoa to gain the ability for progressive movement and fertilization. In the epididymis the sperm protein, lipid and small RNA content are heavily modified due to interaction with luminal proteins secreted by the epididymal epithelium and extracellular vesicles, epididymosomes. This review focuses on epididymal proteins demonstrated to have an effect on sperm functions, such as motility, capacitation, acrosome reaction, sperm-zona pellucida binding and sperm-egg binding, as well as on embryonic development.

42 citations


Journal ArticleDOI
TL;DR: Molecular aspects of sperm capacitation and known triggers in various mammalian species and similarities and differences with the horse will be highlighted to improve the understanding of equine spermCapacitation / fertilizing events.
Abstract: In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.

41 citations


Journal ArticleDOI
TL;DR: It is suggested that antioxidants reduce oxidative stress in BPA-exposed spermatozoa, thus preventing detrimental effects on their function and fertility.
Abstract: In the past few years, bisphenol A, (BPA) an endocrine-disrupting chemical, has received increasing attention because of its detrimental health effects. There is ample evidence to support that BPA interferes with the reproductive health of humans and animals. In spermatozoa, BPA-induced adverse effects are mostly caused by increased oxidative stress. Using an in vitro experimental model, we examined whether antioxidants (glutathione, vitamin C, and vitamin E) have defensive effects against BPA-induced stress in spermatozoa. The results showed that antioxidants inhibit the overproduction of reactive oxygen species (basically cellular peroxides) and increase intracellular ATP levels, thereby preventing motility loss and abnormal acrosome reaction in BPA-exposed spermatozoa. In particular, glutathione and vitamin E reduced the protein kinase A-dependent tyrosine phosphorylation in spermatozoa and, thus, prevented the precocious acrosome reaction from occurring. Furthermore, we found that the compromised fertilisation and early embryo development mediated by BPA-exposed spermatozoa can be improved following their supplementation with glutathione and vitamin E. Based on these findings, we suggest that antioxidants reduce oxidative stress in BPA-exposed spermatozoa, thus preventing detrimental effects on their function and fertility.

37 citations


Journal ArticleDOI
TL;DR: The proposed cellular and molecular mechanisms of Ca deficiency on male reproductive system, sperm function and male fertility and the valuable information currently available for the roles of Ca in male reproduction are discussed.
Abstract: Calcium (Ca) is a significant element that acts as an intracellular second messenger. It is necessary for many physiological processes in spermatozoa including spermatogenesis, sperm motility, capacitation, acrosome reaction and fertilization. Although influences of Ca deficiency on sperm function and male infertility have been widely studied, mechanisms for these abnormalities are not well considered. Poor sperm motility, impairment of chemotaxis, capacitation, acrosome reaction and steroidogenesis are the major mechanisms by which Ca deficiency induces male infertility. Therefore, an optimal seminal Ca concentration is required to strengthen sperm function and all steps leading to successful fertilization. Furthermore, identification of these mechanisms provides valuable information regarding the mechanisms of Ca deficiency on male reproductive system and the way for developing a better clinical approach. In this review, we aim to discuss the proposed cellular and molecular mechanisms of Ca deficiency on male reproductive system, sperm function and male fertility. Also we will discuss the valuable information currently available for the roles of Ca in male reproduction.

36 citations


Journal ArticleDOI
TL;DR: Testing the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models and a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISp2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility define CRisP2 as a determinant of male fertility.
Abstract: The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.

36 citations


Journal ArticleDOI
TL;DR: Increased levels of proteins mainly involved in motility and signaling, both regulated by protein modifiers, were detected in sperm lysates following incubation with capacitation medium, suggesting the possibility that all those proteins might be relocated or released during the process.
Abstract: The male gamete is not completely mature after ejaculation and requires further events in the female genital tract to acquire fertilizing ability, including the processes of capacitation and acrosome reaction. In order to shed light on protein changes experienced by the sperm cell in preparation for fertilization, a comprehensive quantitative proteomic profiling based on isotopic peptide labeling and liquid chromatography followed by tandem mass spectrometry was performed on spermatozoa from three donors of proven fertility under three sequential conditions: purification with density gradient centrifugation, incubation with capacitation medium, and induction of acrosome reaction by exposure to the calcium ionophore A23187. After applying strict selection criteria for peptide quantification and for statistical analyses, 36 proteins with significant changes in their relative abundance within sperm protein extracts were detected. Moreover, the presence of peptide residues potentially harboring sites for post-translational modification was revealed, suggesting that protein modification may be an important mechanism in sperm maturation. In this regard, increased levels of proteins mainly involved in motility and signaling, both regulated by protein modifiers, were detected in sperm lysates following incubation with capacitation medium. In contrast, less abundant proteins in acrosome-reacted cell lysates did not contain potentially modifiable residues, suggesting the possibility that all those proteins might be relocated or released during the process. Protein-protein interaction analysis revealed a subset of proteins potentially involved in sperm maturation, including the proteins Erlin-2 (ERLIN2), Gamma-glutamyl hydrolase (GGH) and Transmembrane emp24 domain-containing protein 10 (TMED10). These results contribute to the current knowledge of the molecular basis of human fertilization. It should now be possible to further validate the potential role of the detected altered proteins as modulators of male infertility.

29 citations


Journal ArticleDOI
TL;DR: It is reported that ejaculates from short compared with long periods of abstinence showed increases in motile sperm count, sperm vitality, normal sperm morphology, acrosome reaction capacity, total antioxidant capacity, sperm mitochondrial membrane potential, high DNA stainability, and a decrease in the sperm DNA fragmentation index.

Journal ArticleDOI
TL;DR: It can be concluded that fluoride exposure reduced the ability of sperm to break down the egg cumulus cell layer, which could be one of the reasons for decreased fertility ability in males treated with fluoride.
Abstract: Fluoride is a widespread environmental pollutant that can induce low sperm quality and fertilizing ability; however, the underlying mechanism still remains unclear. Hence, we aimed to investigate the influence of fluoride on the sperm fertilizing ability via some key proteins in the epididymis. For this, 40 adult rats were assigned randomly into four groups. The control group was given distilled water, while the other three groups were given 25, 50, and 100 mg of NaF/L via drinking water for 56 days, respectively. After 1 day, epididymides were processed for sperm–egg binding, RNA extraction, western blot, and immunofluorescence analysis. Fluoride exposure reduced the ability of sperm to break down the egg cumulus cell layer. A further study revealed that fluoride altered the expression levels of genes and proteins related to acrosome reaction in vivo, including SPAM1, ACR, and PRSS21. However, fluoride only affected the expression of the ACR protein only in the epididymis but not in the testis. Fluoride ...

Journal ArticleDOI
TL;DR: A more thorough understanding of the diversity in structure and function of sperm cells, and underlying selective forces, may help to develop better methods to assess them and become more reliable in estimations of the impact of cryopreservation or effect of changes in the environment and their relevance for fertility.
Abstract: Sperm competition is a powerful selective force that has influenced many reproductive traits in males and females although additional evolutionary explanations may help to understand the diversity of mammalian reproduction. Sperm morphology varies considerably in mammals with extreme examples in several rodent lineages in which a wide range of sizes and complex head morphologies have been identified. Mammalian spermatozoa also differ in function, with swimming velocity and trajectory showing much divergence. Underlying processes mediating function have received little attention so far, but differences in timing and proportion of sperm undergoing capacitation or acrosomal exocytosis may be related to variation in signalling processes. Furthermore, energy required for sperm functions (such as motion, signalling and overall maintenance of cell integrity) can be produced and consumed, following different patterns among species and this could be the result of several selective forces. A more thorough understanding of the diversity in structure and function of sperm cells, and underlying selective forces, may help us develop better methods to assess them taking into account particulars and generalities of sperm form and performance. Such tests could then become more reliable in estimations of the impact of cryopreservation or effect of changes in the environment and their relevance for fertility.

Journal ArticleDOI
TL;DR: In vitro and in vivo, sperm acquire from the vaginal environment factors that induce capacitation, explaining recent findings for their acrosomal status in the isthmus.
Abstract: Extracellular vesicles (EVs) were isolated by ultracentrifugation of vaginal luminal fluid (VLF) from superovulated mice and identified for the first time using transmission electron microscopy. Characterized by size and biochemical markers (CD9 and HSC70), EVs were shown to be both microvesicular and exosomal and were dubbed as "Vaginosomes" (VGS). Vaginal cross-sections were analyzed to visualize EVs in situ: EVs were present in the lumen and also embedded between squamous epithelial and keratinized cells, consistent with their endogenous origin. Western blots detected Plasma membrane Ca2+ -ATPase 1 (PMCA1) and tyrosine-phosphorylated proteins in the VGS cargo and also in uterosomes. Flow cytometry revealed that following coincubation of caudal sperm and VLF for 30 min, the frequencies of cells with the highest Sperm adhesion molecule 1 (SPAM1), PMCA1/4, and PMCA1 levels increased 16.4-, 8.2-, and 27-fold, respectively; compared with control coincubated in phosphate buffered saline (PBS). Under identical conditions, sperm tyrosine-phosphorylated proteins were elevated ~3.3-fold, after VLF coincubation. Progesterone-induced acrosome reaction (AR) rates were significantly (p < 0.001) elevated in sperm coincubated with VGS for 10-30 min, compared with PBS. Sperm artificially deposited in the vaginas of superovulated females for these periods also showed significant (p < 0.01) increases in AR rates, compared with PBS. Thus in vitro and in vivo, sperm acquire from the vaginal environment factors that induce capacitation, explaining recent findings for their acrosomal status in the isthmus. Overall, VGS appear to deliver higher levels of proteins involved in preventing premature capacitation and AR than those promoting them. Our findings which have implications for humans open the possibility of new approaches to infertility treatment with exosome therapeutics.

Journal ArticleDOI
TL;DR: Quercetin has been shown to display intensive antioxidant activity against ROS‐mediated damage in chilled semen, and the effects and molecular mechanisms of QuercetIn on sperm function in the infertile patients with leukocytospermia remain largely unknown.
Abstract: Problem Quercetin has been shown to display intensive antioxidant activity against ROS-mediated damage in chilled semen, and the effects and molecular mechanisms of Quercetin on sperm function in the infertile patients with leukocytospermia remain largely unknown. Methods Semen samples were collected from the infertile men with leukocytospermia (n = 56) and fertile men (n = 44). Computer-assisted semen analysis (CASA) was used to determine sperm motility before and after Quercetin incubation (10 μmol/L). Changes in H2 O2 , sperm mitochondrial DNA (mtDNA), cytochrome B (Cty B), and NADH dehydrogenase 5 (NADH5) contents were measured. Furthermore, hyperactivated motility (HA) and acrosome reaction rates were detected after the stimulation by progesterone with or without Quercetin, respectively. Results Quercetin could significantly improve sperm motility from the leukocytospermic patients. The level of H2 O2 was significantly decreased in the supernatant of leukocytospermic patients after Quercetin treatment. The content of mtDNA in sperm was significantly decreased, whereas the contents of Cyt B and NADH 5 in sperm were significantly increased. Sperm hyperactivated motility and acrosome reaction induced by progesterone were enhanced by Quercetin in sperm from the infertile men with leukocytospermia. Conclusion These data indicate Quercetin could display protective effects against oxidative damage on sperm from the infertile men with leukocytospermia.

Journal ArticleDOI
TL;DR: Taurine and hypotaurine antioxidants are able to reduce deleterious cryo-injuries on morphology, acrosome and HBA and improve sperm recovery at both warming temperatures, however, they do not have any protective action on expression of HSPA2.

Journal ArticleDOI
TL;DR: The results suggest that acute exposure of spermatozoa to these pollutants may impair sperm ability to reach and fertilize the oocyte.
Abstract: Epidemiological studies reported a negative relationship between concentrations of heavy metals and phthalates in seminal fluid and semen quality, likely compromising male fertility potential. The aim of this study was to investigate the in vitro effects of cadmium chloride (CdCl2), a common heavy metal, and diisobutyl phthalate (DIBP), a common phthalate ester, on human sperm functions necessary for fertilization. After in vitro incubation of spermatozoa with 10 µM CdCl2 or 100 and 200 µM DIBP for 24 h, a significant decrease of sperm progressive and hyperactivated motility was observed. The exposure to each of the two toxic agents also induced spontaneous sperm acrosome reaction and blunted the physiological response to progesterone. Both agents induced an increase of caspase activity suggesting triggering of an apoptotic pathway. Our results suggest that acute exposure of spermatozoa to these pollutants may impair sperm ability to reach and fertilize the oocyte.

Journal ArticleDOI
TL;DR: It is concluded that estrus oviductal fluid induced tyrosine phosphorylation and acrosome reaction in a higher proportion of frozen-thawed bull spermatozoa compared to luteal ovidUCTal fluid, although sperm kinematics were not significantly influenced by ovid ductal during incubation.

Journal ArticleDOI
TL;DR: For the first time, the presence of p75NTR in rabbit sperm is shown, which provides new insights on human fertility and affects kinetic and other physiological traits of rabbit sperm.
Abstract: The nerve growth factor (NGF), a member of the neurotrophins family, plays an important role not only in the nervous but also in other non-nervous systems such as the reproductive system. The aim of the paper is to study the in vitro effect of NGF on rabbit sperm functions. Ten adult rabbit bucks were collected five times, and pooled semen samples have been analysed. NGF was quantified in seminal plasma, and the distribution of NGF receptors (TrKA and p75NTR) in sperm was established. Moreover, the dose-effect of NGF on motility rate and track speed was evaluated. Successively, the effect of the neutralisation of NGF receptors was assessed to verify the specific role of each receptor. Untreated sperm were used as control. Our study identified several interesting results: i) We detected NGF in seminal plasma and TrKA and p75NTR in sperm surface. In particular, TrKA is localised in the head and p75NTR in the midpiece and tail of rabbit sperm. ii) Once the optimal dose of NGF (100 ng/mL) was established, its addition affected both kinetics and other physiological traits (capacitation, apoptosis and necrosis) of rabbit sperm. (iii) The neutralisation of TrKA and p75NTR receptors affected sperm traits differently. In particular, sperm speed, apoptosis and capacitation seemed mainly modulated via p75NTR receptor, whereas motile, live cells, necrosis and acrosome reaction were modulated via TrKA. For the first time, we showed the presence of p75NTR in rabbit sperm. NGF affects kinetic and other physiological traits of rabbit sperm. Most of these changes are modulated by the receptors involved (TrKA or p75NTR). Considering that some seminal disorders in human have been correlated with a lower NGF concentration and no studies have been done on the possible involvement of NGF receptors, these findings also provide new insights on human fertility.

Journal ArticleDOI
TL;DR: Results indicate that the GABA concentration can act as a modulator of the acrosome reaction and sperm capacitation in the female reproductive tract.
Abstract: In mammals, ejaculated sperm acquire their fertilizing ability during migration through the female reproductive tract, which secretes several factors that contribute to sperm capacitation. Gamma-aminobutyric acid (GABA) is a well-known neurotransmitter in the central nervous system, but additionally enhances the sperm acrosome reaction in the rat and cow. However, the detailed effects of GABA concentration on sperm function remain unclear. In this study, we detected the presence of the GABA type A receptor (GABA A) in mouse epididymal sperm by western blot analysis and in the sperm acrosome by immunocytochemistry. We also investigated the effects of GABA on sperm fertilizing ability. We found that GABA facilitated the tyrosine phosphorylation of sperm proteins, which is an index of sperm capacitation. GABA also promoted the acrosome reaction, which was suppressed by a selective GABA A receptor antagonist. We then found that the effective GABA concentration for the acrosome reaction corresponds to sperm concentration, but we did not detect any marked effect of GABA on sperm motility using a computer-assisted sperm analysis system. Using immunohistochemistry, we also detected GABA expression in the epithelia of the mouse uterus and oviduct. Furthermore, we found that the mRNA levels of glutamate decarboxylase (Gad), which generates GABA from L-glutamate, were higher in the oviduct than in the uterus, and that Gad mRNA levels were higher at estrus than at the diestrus stage. These results indicate that the GABA concentration can act as a modulator of the acrosome reaction and sperm capacitation in the female reproductive tract.

Journal ArticleDOI
TL;DR: It is demonstrated that CMTM4 is associated with spermatogenesis and sperm quality, and elucidate the roles of Cmtm4 in male fertility and demonstrates its potential as a promising molecular candidate for sperm quality assessment and the diagnosis or treatment of male infertility.

Journal ArticleDOI
TL;DR: It is demonstrated that a high‐throughput screening strategy and established in vitro tests can identify and characterise compounds that improve sperm motility and systematically determine the mechanism of action.
Abstract: Background and purpose Asthenozoospermia is a leading cause of male infertility, but development of pharmacological agents to improve sperm motility is hindered by the lack of effective screening platforms and knowledge of suitable molecular targets. We have demonstrated that a high-throughput screening (HTS) strategy and established in vitro tests can identify and characterise compounds that improve sperm motility. Here, we applied HTS to identify new compounds from a novel small molecule library that increase intracellular calcium ([Ca2+ ]i ), promote human sperm cell motility, and systematically determine the mechanism of action. Experimental approach A validated HTS fluorometric [Ca2+ ]i assay was used to screen an in-house library of compounds. Trequinsin hydrochloride (a PDE3 inhibitor) was selected for detailed molecular (plate reader assays, electrophysiology, and cyclic nucleotide measurement) and functional (motility and acrosome reaction) testing in sperm from healthy volunteer donors and, where possible, patients. Key results Fluorometric assays identified trequinsin as an efficacious agonist of [Ca2+ ]i , although less potent than progesterone. Functionally, trequinsin significantly increased cell hyperactivation and penetration into viscous medium in all donor sperm samples and cell hyperactivation in 22/25 (88%) patient sperm samples. Trequinsin-induced [Ca2+ ]i responses were cross-desensitised consistently by PGE1 but not progesterone. Whole-cell patch clamp electrophysiology confirmed that trequinsin activated CatSper and partly inhibited potassium channel activity. Trequinsin also increased intracellular cGMP. Conclusion and implications Trequinsin exhibits a novel pharmacological profile in human sperm and may be a suitable lead compound for the development of new agents to improve patient sperm function and fertilisation potential.

Journal ArticleDOI
TL;DR: Canthaxanthin ameliorates detrimental effects of cryopreservation on human sperm parameters, and could significantly improve the progressive and total motility, viability, normal morphology, chromatin packaging, acrosome integrity and DNA denaturation and fragmentation.
Abstract: Different antioxidants have been introduced to reduce oxidative stress during the cryopreservation. The main goal of this study was to evaluate the effects of canthaxanthin on human sperm parameters during the freeze-thaw process. This study was performed on 25 normozoospermic semen samples dividing into five groups including 0, 0.1, 1, 10, and 25 µM of canthaxanthin. The prepared spermatozoa were cryopreserved by rapid freezing technique. Sperm motility, viability (eosin-nigrosin), morphology (Papanicolaou), acrosome reaction (double staining), DNA denaturation (acridine orange), chromatin packaging (aniline blue and toluidine blue), and DNA fragmentation (sperm chromatin dispersion test) were evaluated before freezing and after thawing. All sperm parameters after thawing significantly were decreased compared to before freezing. Twenty-five micromolar canthaxanthin could significantly improve the progressive and total motility, viability, normal morphology, chromatin packaging, acrosome integrity and DNA denaturation and fragmentation. Ten micromolar canthaxanthin significantly improved total motility, viability, normal morphology, chromatin packaging, acrosome integrity and DNA denaturation and fragmentation. Whereas, in 1 µM group, there were significant differences only in improvement of acrosome integrity, chromatin packaging (toluidine blue) and DNA denaturation and fragmentation. But, in 0.1 µM group, there were no significant differences in any of measured parameters. It seems that canthaxanthin ameliorates detrimental effects of cryopreservation on human sperm parameters.

Journal ArticleDOI
TL;DR: The proposed multi-modal approach could represent a potential label-free diagnostic tool for use in reproductive medicine and the diagnosis of infertility.
Abstract: Raman microspectroscopy (RM) and polarization sensitive digital holographic imaging (PSDHI) are valuable analytical tools in biological and medical research, allowing the detection of both biochemical and morphological variations of the sample without labels or long sample preparation. Here, using this multi-modal approach we analyze in vitro human sperm capacitation and the acrosome reaction induced by heparin. The multimodal microscopy provides morphofunctional information that can assess the sperms ability to respond to capacitation stimuli (sperm function). More precisely, the birefringence analysis in sperm cells can be used as an indicator of its structural normality. Indeed, digital holography applied for polarization imaging allows for revelation of the polarization state of the sample, showing a total birefringence of the sperm head in non-reacted spermatozoa, and a birefringence localized in the post-acrosomal region in reacted spermatozoa. Additionally, RM allows the detection and spectroscopic characterization of protein/lipid delocalization in the plasma and acrosomal membranes that can be used as valuable Raman biomarkers of sperm function. Interestingly, these spectral variations can be correlated with different time phases of the cell capacitation response. Although further experimentation is required, the proposed multimodal approach could represent a potential label-free diagnostic tool for use in reproductive medicine and the diagnosis of infertility.

Journal ArticleDOI
TL;DR: This study characterizes multimeric protein complexes on the sperm surface and identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.
Abstract: The sperm protein IZUMO1 (Izumo sperm-egg fusion 1) and its recently identified binding partner on the oolemma, IZUMO1R, are among the first ligand-receptor pairs shown to be essential for gamete recognition and adhesion. However, the IZUMO1-IZUMO1R interaction does not appear to be directly responsible for promoting the fusion of the gamete membranes, suggesting that this critical phase of the fertilization cascade requires the concerted action of alternative fusogenic machinery. It has therefore been proposed that IZUMO1 may play a secondary role in the organization and/or stabilization of higher-order heteromeric complexes in spermatozoa that are required for membrane fusion. Here, we show that fertilization-competent (acrosome reacted) mouse spermatozoa harbor several high molecular weight protein complexes, a subset of which are readily able to adhere to solubilized oolemmal proteins. At least two of these complexes contain IZUMO1 in partnership with GLI pathogenesis-related 1 like 1 (GLIPR1L1). This interaction is associated with lipid rafts and is dynamically remodeled upon the induction of acrosomal exocytosis in preparation for sperm adhesion to the oolemma. Accordingly, the selective ablation of GLIPR1L1 leads to compromised sperm function characterized by a reduced ability to undergo the acrosome reaction and a failure of IZUMO1 redistribution. Collectively, this study characterizes multimeric protein complexes on the sperm surface and identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.

Journal ArticleDOI
TL;DR: The data suggest that Pb exposure at environmental concentrations decreases the acrosome function and affects the sperm fertilization ability; this is probably a consequence of the low Rac1 levels, which did not allow adequate actin polymerization to occur.

Journal ArticleDOI
TL;DR: The serine protease testisin (PRSS21) in stallion spermatozoa is characterized, examining its surface expression, possible origins in the testis and epididymis, and changes in response to capacitation and acrosome reaction, as well as its capacity to form high molecular weight complexes and interact with other proteins.
Abstract: BACKGROUND AND OBJECTIVES Serine proteases are emerging as important players in the spermatozoon's acquisition of functional competence. This study aimed to characterize the serine protease testisin (PRSS21) in stallion spermatozoa, examining its surface expression, possible origins in the testis and epididymis, and changes in response to capacitation and acrosome reaction, as well as its capacity to form high molecular weight complexes and interact with other proteins. MATERIALS AND METHODS The role of serine proteases in spontaneous capacitation and acrosome reaction of stallion spermatozoa was established using the serine protease inhibitor, AEBSF. Testisin localization, before and after exposure of stallion spermatozoa to capacitating conditions and calcium ionophore, was examined using live cell immunofluorescence and flow cytometry. Immunohistochemistry of testicular and epididymal tissues was used to further dissect the origins of sperm testisin. Testisin's participation in high molecular weight protein complexes and identification of its interacting partner proteins were investigated using Blue Native PAGE, co-immunoprecipitation, and mass spectrometry, with interrogation of protein-protein interaction databases and gene ontology analysis of partner proteins used to further explore the potential roles of the testisin-containing complex in sperm function. RESULTS Testisin surface expression increased significantly in capacitated spermatozoa (p < 0.001), increased further following acrosome reaction (p < 0.01), and was localized to the equatorial region of the sperm head. Testisin was also detected in luminal fluid within the caput and corpus regions of the epididymis, epididymal spermatozoa, and epididymal epithelial cells. Testisin formed several multiprotein complexes; co-immunoprecipitation revealed interactions of testisin with a multitude of zona pellucida-binding proteins, including ZPBP, ZAN, acrosin, several heat-shock proteins, and components of the TCP1 complex. CONCLUSION Testisin appears to form part of the zona pellucida-binding complex in stallion spermatozoa and may be involved in the proteolytic cascade that prepares the sperm surface for interaction with the oocyte.

Journal ArticleDOI
TL;DR: A library-versus-library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against AB HD2 and a panel of closely related ABHD proteins resulted in the rapid identification of novel inhibitors for ABHD2.
Abstract: ABHD2 is a serine hydrolase that belongs to the subgroup of the α,β-hydrolase fold containing proteins, which is involved in virus propagation, immune response and fertilization. Chemical tools to selectively modulate the activity of ABHD2 in an acute setting are highly desired to investigate its biological role, but are currently lacking. Here, we report a library versus library screening using activity-based protein profiling (ABPP) to evaluate in parallel the selectivity and activity of a focused lipase inhibitor library against ABHD2 and a panel of closely related ABHD proteins. This screen resulted in the rapid identification of novel inhibitors for ABHD2. The selectivity of the inhibitor was further investigated in native mouse testis proteome by competitive ABPP, revealing a highly restricted off-target profile. Progesterone-induced acrosome reaction was reduced in a dose-dependent manner by the newly identified inhibitor, which provides further support for the key-role of ABHD2 in P4-stimulated acrosome reaction. On this basis, the ABHD2 inhibitor is an excellent starting point for further optimization of ABHD2 inhibitors that can modulate sperm fertility and may lead to novel contraceptives.

Journal ArticleDOI
TL;DR: The results suggested that GSK3α/β regulates sperm motility and acrosome reaction via phospho-ser21-GSK3α and phosphO-ser9- GSK3β that involved in the regulation of sperm energy metabolism.
Abstract: Hyperactivation and acrosome reaction of sperm are pre-requisite steps for fertilization. However, the hyperactivation and acrosome reaction are critically controlled through the phosphorylation of specific proteins. Glycogen synthase kinase-3 (GSK3), a serine/threonine kinase with two different isoforms (α and β), is involved in biochemical signaling pathways. This study was aimed to investigate whether the GSK3α/β is present in goat sperm and its regulatory role in sperm motility and acrosome reaction. GSK3α/β was detected with immunofluorescence and Western blotting. Sperm motility, membrane integrity, acrosome reaction, mitochondrial membrane potential, phospho-Ser21-GSK3α and phospho-Ser9-GSK3β were analyzed. The ATP production and activities of lactate dehydrogenase (LDH), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) were measured. It was observed that the GSK3α/β was expressed in goat sperm, especially in the peri-acrosomal, mid-piece and principal piece of the tail. The abundance of GSK3α/β in sperm was increased during transit along the epididymis. Addition of either 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or CHIR99021 significantly increased the sperm motility patterns and GSK3α/β phosphorylation. Interestingly, the adenosine triphosphate (ATP) production, activities of LDH, MDH and SDH were observed to be increased in the CHIR99021 treatment. The results suggested that GSK3α/β regulates sperm motility and acrosome reaction via phospho-ser21-GSK3α and phospho-ser9-GSK3β that involved in the regulation of sperm energy metabolism.

Journal ArticleDOI
TL;DR: It is shown that PKA via PLD and PI3K activation protects the sperm from undergoing sAR by enhancing actin polymerization.