scispace - formally typeset
Search or ask a question

Showing papers on "Electronic structure published in 2018"


Journal ArticleDOI
TL;DR: The Crystal program as discussed by the authors adopts atom-centered Gaussian-type functions as a basis set, which makes it possible to perform all-electron as well as pseudopotential calculations.
Abstract: The latest release of the Crystal program for solid-state quantum-mechanical ab initio simulations is presented. The program adopts atom-centered Gaussian-type functions as a basis set, which makes it possible to perform all-electron as well as pseudopotential calculations. Systems of any periodicity can be treated at the same level of accuracy (from 0D molecules, clusters and nanocrystals, to 1D polymers, helices, nanorods, and nanotubes, to 2D monolayers and slab models for surfaces, to actual 3D bulk crystals), without any artificial repetition along nonperiodic directions for 0–2D systems. Density functional theory calculations can be performed with a variety of functionals belonging to several classes: local-density (LDA), generalized-gradient (GGA), meta-GGA, global hybrid, range-separated hybrid, and self-consistent system-specific hybrid. In particular, hybrid functionals can be used at a modest computational cost, comparable to that of pure LDA and GGA formulations, because of the efficient implementation of exact nonlocal Fock exchange. Both translational and point-symmetry features are fully exploited at all steps of the calculation, thus drastically reducing the corresponding computational cost. The various properties computed encompass electronic structure (including magnetic spin-polarized open-shell systems, electron density analysis), geometry (including full or constrained optimization, transition-state search), vibrational properties (frequencies, infrared and Raman intensities, phonon density of states), thermal properties (quasi-harmonic approximation), linear and nonlinear optical properties (static and dynamic [hyper]polarizabilities), strain properties (elasticity, piezoelectricity, photoelasticity), electron transport properties (Boltzmann, transport across nanojunctions), as well as X-ray and inelastic neutron spectra. The program is distributed in serial, parallel, and massively parallel versions. In this paper, the original developments that have been devised and implemented in the last 4 years (since the distribution of the previous public version, Crystal14, occurred in December 2013) are described.

1,108 citations


Journal ArticleDOI
TL;DR: In this paper, the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulkboundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes.
Abstract: The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principle calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-dimensional states located at step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.

457 citations


Journal ArticleDOI
TL;DR: It is established that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk–boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes.
Abstract: The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principle calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-dimensional states located at step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.

440 citations


Journal ArticleDOI
23 Jan 2018-ACS Nano
TL;DR: This work provides a prototype material for looking into the role of vacancies between electronic structures and activities in 2D photocatalytic materials and gives insights into PHR systems at the atomic level.
Abstract: It is highly demanded to steer the charge flow in photocatalysts for efficient photocatalytic hydrogen reactions (PHRs). In this study, we developed a smart strategy to position MoS2 quantum dots (QDs) at the S vacancies on a Zn facet in monolayered ZnIn2S4 (Vs-M-ZnIn2S4) to craft a two-dimensional (2D) atomic-level heterostructure (MoS2QDs@Vs-M-ZnIn2S4). The electronic structure calculations indicated that the positive charge density of the Zn atom around the sulfur vacancy (Vs) was more intensive than other Zn atoms. The Vs confined in monolayered ZnIn2S4 established an important link between the electronic manipulation and activities of ZnIn2S4. The Vs acted as electron traps, prevented vertical transmission of electrons, and enriched electrons onto the Zn facet. The Vs-induced atomic-level heterostructure sewed up vacancy structures of Vs-M-ZnIn2S4, resulting in a highly efficient interface with low edge contact resistance. Photogenerated electrons could quickly migrate to MoS2QDs through the intimate...

440 citations


Journal ArticleDOI
TL;DR: In this paper, the atomic scale reconstruction in twisted bilayer graphene (TBG) and its effect on the electronic structure was reported. But the atomic and electronic reconstruction were not considered.
Abstract: Control of the interlayer twist angle in two-dimensional (2D) van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moire superlattice of tunable length scale. In twisted bilayer graphene (TBG), the simple moire superlattice band description suggests that the electronic band width can be tuned to be comparable to the vdW interlayer interaction at a 'magic angle', exhibiting strongly correlated behavior. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favoring interlayer commensurability, which competes with the intralayer lattice distortion. Here we report the atomic scale reconstruction in TBG and its effect on the electronic structure. We find a gradual transition from incommensurate moire structure to an array of commensurate domain structures as we decrease the twist angle across the characteristic crossover angle, $\theta_c$ ~1°. In the twist regime smaller than $\theta_c$ where the atomic and electronic reconstruction become significant, a simple moire band description breaks down. Upon applying a transverse electric field, we observe electronic transport along the network of one-dimensional (1D) topological channels that surround the alternating triangular gapped domains, providing a new pathway to engineer the system with continuous tunability.

417 citations


Journal ArticleDOI
TL;DR: A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed, based on Becke's power-series ansatz from 1997 and explicitly parametrized by including the standard D3 semi-classical dispersion correction.
Abstract: A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed Like B97-D, it is based on Becke’s power-series ansatz from 1997 and is explicitly parametrized by including the standard D3 semi-classical dispersion correction The orbitals are expanded in a modified valence triple-zeta Gaussian basis set, which is available for all elements up to Rn Remaining basis set errors are mostly absorbed in the modified B97 parametrization, while an established atom-pairwise short-range potential is applied to correct for the systematically too long bonds of main group elements which are typical for most semi-local density functionals The new composite scheme (termed B97-3c) completes the hierarchy of “low-cost” electronic structure methods, which are all mainly free of basis set superposition error and account for most interactions in a physically sound and asymptotically correct manner B97-3c yields excellent mol

342 citations


Journal ArticleDOI
TL;DR: In this paper, a dual form of the plane wave basis is proposed to obtain a Hamiltonian representation with O(N^2) second-quantized terms for condensed phase materials.
Abstract: Quantum simulation of the electronic structure problem is one of the most researched applications of quantum computing. The majority of quantum algorithms for this problem encode the wavefunction using N Gaussian orbitals, leading to Hamiltonians with O(N^4) second-quantized terms. We avoid this overhead and extend methods to condensed phase materials by utilizing a dual form of the plane wave basis which diagonalizes the potential operator, leading to a Hamiltonian representation with O(N^2) second-quantized terms. Using this representation, we can implement single Trotter steps of the Hamiltonians with linear gate depth on a planar lattice. Properties of the basis allow us to deploy Trotter- and Taylor-series-based simulations with respective circuit depths of O(N^(7/2)) and O(N^(8/3)) for fixed charge densities. Variational algorithms also require significantly fewer measurements in this basis, ameliorating a primary challenge of that approach. While our approach applies to the simulation of arbitrary electronic structure problems, the basis sets explored in this work will be most practical for treating periodic systems, such as crystalline materials, in the near term. We conclude with a proposal to simulate the uniform electron gas (jellium) using a low-depth variational ansatz realizable on near-term quantum devices. From these results, we identify simulations of low-density jellium as a promising first setting to explore quantum supremacy in electronic structure.

314 citations


Journal ArticleDOI
TL;DR: An emergent electronic structure in single-atom alloys is shown, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element that affords unique adsorption properties important for catalysis.
Abstract: Alloying provides a means by which to tune a metal catalyst’s electronic structure and thus tailor its performance; however, mean-field behaviour in metals imposes limits. To access unprecedented catalytic behaviour, materials must exhibit emergent properties that are not simply interpolations of the constituent components’ properties. Here we show an emergent electronic structure in single-atom alloys, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element. This unusual electronic structure alters the minority element’s adsorption properties such that the bonding with adsorbates resembles the bonding in molecular metal complexes. We demonstrate this phenomenon with AgCu alloys, dilute in Cu, where the Cu d states are nearly unperturbed from their free-atom state. In situ electron spectroscopy demonstrates that this unusual electronic structure persists in reaction conditions and exhibits a 0.1 eV smaller activation barrier than bulk Cu in methanol reforming. Theory predicts that several other dilute alloys exhibit this phenomenon, which offers a design approach that may lead to alloys with unprecedented catalytic properties. In solid metals, electron orbitals form broad bands and their binding of adsorbates depends on the bandwidth. Now, it is shown that a weak solute–matrix interaction in dilute alloys results in extremely narrow electronic bands on the solute, similar to a free-atom electronic structure. This structure affords unique adsorption properties important for catalysis.

298 citations


Journal ArticleDOI
TL;DR: In this paper, a new family of quantum circuits based on exchange-type gates was proposed to enable accurate calculations while keeping the gate count (i.e., the circuit depth) low.
Abstract: In this work we investigate methods to improve the efficiency and scalability of quantum algorithms for quantum chemistry applications. We propose a transformation of the electronic structure Hamiltonian in the second quantization framework into the particle-hole picture, which offers a better starting point for the expansion of the system wave function. The state of the molecular system at study is parametrized so as to constrain the sampling of the corresponding wave function within the sector of the molecular Fock space that contains the desired solution. To this end, we explore different mapping schemes to encode the molecular ground state wave function in a quantum register. Taking advantage of known post-Hartree-Fock quantum chemistry approaches and heuristic Hilbert space search quantum algorithms, we propose a new family of quantum circuits based on exchange-type gates that enable accurate calculations while keeping the gate count (i.e., the circuit depth) low. The particle-hole implementation of the unitary coupled-cluster (UCC) method within the variational quantum eigensolver approach gives rise to an efficient quantum algorithm, named q-UCC, with important advantages compared to the straightforward translation of the classical coupled-cluster counterpart. In particular, we show how a single Trotter step in the expansion of the system wave function can accurately and efficiently reproduce the ground-state energy of simple molecular systems.

282 citations


Journal ArticleDOI
TL;DR: S semiconducting 2D perovskites containing lead and tin halide inorganic frameworks are described, describing the role of the heavy atoms in the inorganic framework; the geometry and chemistry of organic cations; and the "softness" of the organic-inorganic lattice on the electronic structure and dynamics of electrons, excitons, and phonons that govern the physical properties of these materials.
Abstract: Two-dimensional (2D) hybrid perovskites are stoichiometric compounds consisting of alternating inorganic metal-halide sheets and organoammonium cationic layers. This materials class is widely tailorable in composition, structure, and dimensionality and is providing an intriguing playground for the solid-state chemistry and physics communities to uncover structure–property relationships. In this Perspective, we describe semiconducting 2D perovskites containing lead and tin halide inorganic frameworks. In these 2D perovskites, charges are typically confined to the inorganic framework because of strong quantum and dielectric confinement effects, and exciton binding energies are many times greater than kT at room temperature. We describe the role of the heavy atoms in the inorganic framework; the geometry and chemistry of organic cations; and the “softness” of the organic–inorganic lattice on the electronic structure and dynamics of electrons, excitons, and phonons that govern the physical properties of these...

251 citations


Journal ArticleDOI
TL;DR: This study uses angle-resolved photoemission to investigate the electronic structure of monolayer VSe2 grown on bilayer graphene/SiC and shows that pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below Tc = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction.
Abstract: How the interacting electronic states and phases of layered transition-metal dichalcogenides evolve when thinned to the single-layer limit is a key open question in the study of two-dimensional materials. Here, we use angle-resolved photoemission to investigate the electronic structure of monolayer VSe2 grown on bilayer graphene/SiC. While the global electronic structure is similar to that of bulk VSe2, we show that, for the monolayer, pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below Tc = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction. These observations point to a charge-density wave instability in the monolayer that is strongly enhanced over that of the bulk. Moreover, our measurements of both the electronic structure and of X-ray magnetic circular dichroism reveal no signatures of a ferromagnetic ordering, in contrast to the results of a recent experimental study as well as expectations f...

Journal ArticleDOI
TL;DR: QMCPACK as mentioned in this paper is an open source quantum Monte Carlo package for ab initio electronic structure calculations that supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians.
Abstract: QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples.
Abstract: FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here, we provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples. We discuss the unique place of FeSe among iron-based superconductors, as it is a multiband system exhibiting strong orbitally dependent electronic correlations and unusually small Fermi surfaces and is prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure that accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multiband multiorbital nematic electronic structure impacts our understanding of the superconductivity, and show that...

Journal ArticleDOI
TL;DR: A 3D mesoporous vdW heterostructure of graphene and nitrogen-doped MoS2 via a two-step sequential chemical vapor deposition method is constructed to offer an all-round engineering of 2D materials leading to robustly modified properties and greatly enhanced electrochemical activities.
Abstract: The emergence of van der Waals (vdW) heterostructures of 2D materials has opened new avenues for fundamental scientific research and technological applications. However, the current concepts and strategies of material engineering lack feasibilities to comprehensively regulate the as-obtained extrinsic physicochemical characters together with intrinsic properties and activities for optimal performances. A 3D mesoporous vdW heterostructure of graphene and nitrogen-doped MoS2 via a two-step sequential chemical vapor deposition method is constructed. Such strategy is demonstrated to offer an all-round engineering of 2D materials including the morphology, edge, defect, interface, and electronic structure, thereby leading to robustly modified properties and greatly enhanced electrochemical activities. The hydrogen evolution is substantially accelerated on MoS2 , while the oxygen reduction and evolution are significantly improved on graphene. This work provides a powerful overall engineering strategy of 2D materials for electrocatalysis, which is also enlightening for other nanomaterials and energy-related applications.

Journal ArticleDOI
TL;DR: In this article, the authors propose a method to calculate excited state energies of electronic structure Hamiltonians using overlap estimation, which requires the same number of qubits as the variational quantum eigenvalue solver (VQE) and at most twice the circuit depth.
Abstract: The calculation of excited state energies of electronic structure Hamiltonians has many important applications, such as the calculation of optical spectra and reaction rates. While low-depth quantum algorithms, such as the variational quantum eigenvalue solver (VQE), have been used to determine ground state energies, methods for calculating excited states currently involve the implementation of high-depth controlled-unitaries or a large number of additional samples. Here we show how overlap estimation can be used to deflate eigenstates once they are found, enabling the calculation of excited state energies and their degeneracies. We propose an implementation that requires the same number of qubits as VQE and at most twice the circuit depth. Our method is robust to control errors, is compatible with error-mitigation strategies and can be implemented on near-term quantum computers.

Journal ArticleDOI
TL;DR: QMCPACK as mentioned in this paper is an open source quantum Monte Carlo package for ab-initio electronic structure calculations that supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians.
Abstract: QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at this http URL .

Journal ArticleDOI
TL;DR: The results support the semiclassical picture of electronic transport along a helical pathway under the influence of spin-orbit coupling induced by the electrostatic molecular potential.
Abstract: The interaction of low-energy photoelectrons with well-ordered monolayers of enantiopure helical heptahelicene molecules adsorbed on metal surfaces leads to a preferential transmission of one longitudinally polarized spin component, which is strongly coupled to the helical sense of the molecules. Heptahelicene, composed of only carbon and hydrogen atoms, exhibits only a single helical turn but shows excess in longitudinal spin polarization of about PZ = 6 to 8% after transmission of initially balanced left- and right-handed spin polarized electrons. Insight into the electronic structure, that is, the projected density of states, and the spin-dependent electron scattering in the helicene molecule is gained by using spin-resolved density functional theory calculations and a model Hamiltonian approach, respectively. Our results support the semiclassical picture of electronic transport along a helical pathway under the influence of spin–orbit coupling induced by the electrostatic molecular potential.

Journal ArticleDOI
TL;DR: The revM06 functional improves on the M06-2X functional for main-group and transition-metal bond energies, atomic excitation energies, isomerization energies of large molecules, molecular structures, and both weakly and strongly correlated atomic and molecular data, and it shows a clear improvement over M06 and M06 of noncovalent interactions, including smoother potential curves for rare-gas dimers.
Abstract: We present a hybrid metageneralized-gradient-approximation functional, revM06, which is based on adding Hartree–Fock exchange to the revM06-L functional form Compared with the original M06 suite of density functionals, the resulting revM06 functional has significantly improved across-the-board accuracy for both main-group and transition-metal chemistry The revM06 functional improves on the M06-2X functional for main-group and transition-metal bond energies, atomic excitation energies, isomerization energies of large molecules, molecular structures, and both weakly and strongly correlated atomic and molecular data, and it shows a clear improvement over M06 and M06-2X for noncovalent interactions, including smoother potential curves for rare-gas dimers The revM06 functional also predicts more accurate results than M06 and M06-2X for most of the outside-the-training-set test sets examined in this study Therefore, the revM06 functional is well-suited for a broad range of chemical applications for both main-group and transition-metal elements

Journal ArticleDOI
TL;DR: In this article, strong electron-phonon coupling in magic-angle twisted bilayer graphene (MA-TBG) was obtained from atomistic description of the system including more than 10 000 atoms in the moir\'e supercell.
Abstract: We report strong electron-phonon coupling in magic-angle twisted bilayer graphene (MA-TBG) obtained from atomistic description of the system including more than 10 000 atoms in the moir\'e supercell. Electronic structure, phonon spectrum, and electron-phonon coupling strength $\ensuremath{\lambda}$ are obtained before and after atomic-position relaxation both in and out of plane. Obtained $\ensuremath{\lambda}$ is very large for MA-TBG, with $\ensuremath{\lambda}g1$ near the half-filling energies of the flat bands, while it is small ($\ensuremath{\lambda}\ensuremath{\sim}0.1$) for monolayer and unrotated bilayer graphene. Significant electron-hole asymmetry occurs in the electronic structure after atomic-structure relaxation, so $\ensuremath{\lambda}$ is much stronger with hole doping than electron doping. Obtained electron-phonon coupling is nearly isotropic and depends very weakly on electronic band and momentum, indicating that electron-phonon coupling prefers single-gap $s$-wave superconductivity. Relevant phonon energies are much larger than electron energy scale, going far beyond adiabatic limit. Our results provide a fundamental understanding of the electron-phonon interaction in MA-TBG, highlighting that it can contribute to rich physics of the system.

Journal ArticleDOI
TL;DR: In this article, a hybrid quantum algorithm employing a restricted Boltzmann machine to obtain accurate molecular potential energy surfaces was presented, which achieved high accuracy for the ground state energy for H2, LiH, H2O.
Abstract: Considering recent advancements and successes in the development of efficient quantum algorithms for electronic structure calculations—alongside impressive results using machine learning techniques for computation—hybridizing quantum computing with machine learning for the intent of performing electronic structure calculations is a natural progression. Here we report a hybrid quantum algorithm employing a restricted Boltzmann machine to obtain accurate molecular potential energy surfaces. By exploiting a quantum algorithm to help optimize the underlying objective function, we obtained an efficient procedure for the calculation of the electronic ground state energy for a small molecule system. Our approach achieves high accuracy for the ground state energy for H2, LiH, H2O at a specific location on its potential energy surface with a finite basis set. With the future availability of larger-scale quantum computers, quantum machine learning techniques are set to become powerful tools to obtain accurate values for electronic structures. With the rapid development of quantum computers, quantum machine learning approaches are emerging as powerful tools to perform electronic structure calculations. Here, the authors develop a quantum machine learning algorithm, which demonstrates significant improvements in solving quantum many-body problems.

Journal ArticleDOI
TL;DR: Chiral noble metal nanostructures are particularly interesting for optical materials and enantioselective catalysis and here, the authors report the synthesis and crystal structure of a chiral Ag23 nanocluster, whose twisted fcc skeleton is responsible for its chiral nature–an unusual property for silver.
Abstract: We report the synthesis and crystal structure of a nanocluster composed of 23 silver atoms capped by 8 phosphine and 18 phenylethanethiolate ligands. X-ray crystallographic analysis reveals that the kernel of the Ag nanocluster adopts a helical face-centered cubic structure with C2 symmetry. The thiolate ligands show two binding patterns with the surface Ag atoms: tri- and tetra-podal types. The tetra-coordination mode of thiolate has not been found in previous Ag nanoclusters. No counter ion (e.g., Na+ and NO3-) is found in the single-crystal and the absence of such ions is also confirmed by X-ray photoelectron spectroscopy analysis, indicating electrical neutrality of the nanocluster. Interestingly, the nanocluster has an open shell electronic structure (i.e., 23(Ag 5s1)-18(SR) = 5e), as confirmed by electron paramagnetic resonance spectroscopy. Time-dependent density functional theory calculations are performed to correlate the structure and optical absorption/emission spectra of the Ag nanocluster.

Journal ArticleDOI
TL;DR: In this paper, the authors present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency.
Abstract: Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h-BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the non-empirical, strongly constrained and appropriately normed density functional accurately describes both the antiferromagnetic ground state and the metallic state of the doped system.
Abstract: A first-principles density-functional description of the electronic structures of the high-Tc cuprates has remained a long-standing problem since their discovery in 1986, with calculations failing to capture either the insulating (magnetic) state of the pristine compound or the transition from the insulating to metallic state with doping. Here, by taking lanthanum cuprate as an exemplar high-Tc cuprate, we show that the recently developed non-empirical, strongly constrained and appropriately normed density functional accurately describes both the antiferromagnetic insulating ground state of the pristine compound and the metallic state of the doped system. Our study yields new insight into the low-energy spectra of cuprates and opens up a pathway toward wide-ranging first-principles investigations of electronic structures of cuprates and other correlated materials. A first-principles description of electronic states in cuprate high-temperature superconductors has remained a longstanding challenge in the field. The authors show how the equilibrium crystal structure as well as the key ground-state electronic and magnetic properties of lanthanum cuprate superconductor as an exemplar correlated material can be obtained accurately by applying an advanced functional within the framework of the density functional theory.

Journal ArticleDOI
TL;DR: Ionization potential calculations and estimates of type-I band alignment support the notion of quantum confinement leading to fast, green emission from CsPbBr3 nanostructures embedded in Cs4Pb br6, and show that those lattice-coupled carriers are likely responsible for observed ultraviolet emission.
Abstract: Among the important family of halide perovskites, one particular case of all-inorganic, 0-D Cs4PbBr6 and 3-D CsPbBr3-based nanostructures and thin films is witnessing intense activity due to ultrafast luminescence with high quantum yield To understand their emissive behavior, we use hybrid density functional calculations to first compare the ground-state electronic structure of the two prospective compounds The dispersive band edges of CsPbBr3 do not support self-trapped carriers, which agrees with reports of weak exciton binding energy and high photocurrent The larger gap 0-D material Cs4PbBr6, however, reveals polaronic and excitonic features We show that those lattice-coupled carriers are likely responsible for observed ultraviolet emission around ∼375 nm, reported in bulk Cs4PbBr6 and Cs4PbBr6/CsPbBr3 composites Ionization potential calculations and estimates of type-I band alignment support the notion of quantum confinement leading to fast, green emission from CsPbBr3 nanostructures embedded in

Journal ArticleDOI
TL;DR: In this article, a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density functional theory (QEDFT) was introduced.
Abstract: We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).(1−5) Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-stat...

Journal ArticleDOI
TL;DR: In this article, the authors combine low-temperature noncontact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs.
Abstract: Chalcogen vacancies are considered to be the most abundant point defects in two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and predicted to result in deep in-gap states (IGS). As a result, important features in the optical response of 2D-TMDs have typically been attributed to chalcogen vacancies, with indirect support from Transmission Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM imaging measurements do not provide direct access to the electronic structure of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a direct probe of local electronic structure, the interpretation of the chemical nature of atomically-resolved STM images of point defects in 2D-TMDs can be ambiguous. As a result, the assignment of point defects as vacancies or substitutional atoms of different kinds in 2D-TMDs, and their influence on their electronic properties, has been inconsistent and lacks consensus. Here, we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs. Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our results and analysis strongly suggest that the common chalcogen defects in our 2D-TMDs, prepared and measured in standard environments, are substitutional oxygen rather than vacancies.

Journal ArticleDOI
TL;DR: In this paper, a polylogarithmic-depth quantum algorithm for antisymmetrizing the initial states required for simulation of fermions in first quantization is presented.
Abstract: Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions and material properties and is one of the most anticipated applications of quantum computing. We present three techniques for reducing the cost of preparing fermionic Hamiltonian eigenstates using phase estimation. First, we report a polylogarithmic-depth quantum algorithm for antisymmetrizing the initial states required for simulation of fermions in first quantization. This is an exponential improvement over the previous state-of-the-art. Next, we show how to reduce the overhead due to repeated state preparation in phase estimation when the goal is to prepare the ground state to high precision and one has knowledge of an upper bound on the ground state energy that is less than the excited state energy (often the case in quantum chemistry). Finally, we explain how one can perform the time evolution necessary for the phase estimation based preparation of Hamiltonian eigenstates with exactly zero error by using the recently introduced qubitization procedure. Improved quantum algorithm can now simulate the electronic structure of materials and molecules much faster than what was possible before. A team involving researchers from Macquarie University, Microsoft Research, and Google has developed theoretical tools to efficiently prepare the initial “guess” for the electronic state one wants to simulate, in a way that it correctly includes the property of fermionic systems called “anti-symmetrization”, which means that the total wavefunction changes sign if two particles exchange their positions. The team also managed to reduce the number of physical operations that the quantum computer should perform to evolve the initial guess up to the final solution. Future large-scale quantum simulations should be able to model electronic structure much more efficiently than standard computers, with significant impact in chemistry, biochemistry and material science.

Journal ArticleDOI
TL;DR: A combined experimental and theoretical study with two new isomeric IDTT derivatives sheds light on the exceptional IDTT properties vis-à-vis fullerenes in terms of surprisingly close molecular packing, strong electronic coupling, and low reorganization energies.
Abstract: New organic semiconductors are essential for developing inexpensive, high-efficiency, solution-processable polymer solar cells (PSCs). PSC photoactive layers are typically fabricated by film-casting a donor polymer and a fullerene acceptor blend, with ensuing solvent evaporation and phase separation creating discrete conduits for photogenerated holes and electrons. Until recently, n-type fullerene acceptors dominated the PSC literature; however, indacenodithienothiophene (IDTT)-based acceptors have recently enabled remarkable PSC performance metrics, for reasons that are not entirely obvious. We report two isomeric IDTT-based acceptors 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz-(5, 6)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]di-thiophene (ITN-C9) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz(6,7)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITzN-C9) that shed light on the exceptional IDTT properties vis-a-vis fullerenes. The neat acceptors and blends with fluoropolymer donor poly{[4,8-bis[5-(2- ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene2,6-diyl]-alt-[2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]]} (PBDB-TF) are investigated by optical spectroscopy, cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, photovoltaic response, space-charge-limited current transport, atomic force microscopy, grazing incidence wide-angle X-ray scattering, and density functional theory-level quantum chemical analysis. The data reveal that ITN-C9 and ITzN-C9 organize such that the lowest unoccupied molecular orbital-rich end groups have intermolecular π−π distances as close as 3.31(1) A, with electronic coupling integrals as large as 38 meV, and internal reorganization energies as small as 0.133 eV, comparable to or superior to those in fullerenes. ITN-C9 and ITzN-C9 have broad solar-relevant optical absorption, and, when blended with PBDB-TF, afford devices with power conversion efficiencies near 10%. Performance differences between ITN-C9 and ITzN-C9 are understandable in terms of molecular and electronic structure distinctions via the influences on molecular packing and orientation with respect to the electrode.

Journal ArticleDOI
TL;DR: In this article, the role of electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) is studied regarding electron density deformation flexibility based on first-principles calculations.
Abstract: The role of $d$ electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably, the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding ${e}_{g}$ to ${t}_{2}$g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.

Journal ArticleDOI
TL;DR: In this article, the electronic, optical and thermoelectric properties of Zintl orthorhombic phase AE3AlAs3 (AE = Sr, Ba) compounds using the full potential linearized augmented plane wave method were investigated.