scispace - formally typeset
Search or ask a question

Showing papers on "Epileptogenesis published in 2008"


Journal ArticleDOI
TL;DR: Data show that specific inflammatory pathways are chronically activated during epileptogenesis and they persist in chronic epileptic tissue, suggesting they may contribute to the etiopathogenesis of TLE.

619 citations


Journal ArticleDOI
TL;DR: Whether rapamycin could prevent or reverse epilepsy, as well as other cellular and molecular brain abnormalities in Tsc1GFAPCKO mice, is tested.
Abstract: Objective Tuberous sclerosis complex (TSC) represents one of the most common genetic causes of epilepsy. TSC gene inactivation leads to hyperactivation of the mammalian target of rapamycin signaling pathway, raising the intriguing possibility that mammalian target of rapamycin inhibitors might be effective in preventing or treating epilepsy in patients with TSC. Mice with conditional inactivation of the Tsc1 gene primarily in glia (Tsc1GFAPCKO mice) develop glial proliferation, progressive epilepsy, and premature death. Here, we tested whether rapamycin could prevent or reverse epilepsy, as well as other cellular and molecular brain abnormalities in Tsc1GFAPCKO mice. Methods Tsc1GFAPCKO mice and littermate control animals were treated with rapamycin or vehicle starting at postnatal day 14 (early treatment) or 6 weeks of age (late treatment), corresponding to times before and after onset of neurological abnormalities in Tsc1GFAPCKO mice. Mice were monitored for seizures by serial video-electroencephalogram and for long-term survival. Brains were examined histologically for astrogliosis and neuronal organization. Expression of phospho-S6 and other molecular markers correlating with epileptogenesis was measured by Western blotting. Results Early treatment with rapamycin prevented the development of epilepsy and premature death observed in vehicle-treated Tsc1GFAPCKO mice. Late treatment with rapamycin suppressed seizures and prolonged survival in Tsc1GFAPCKO mice that had already developed epilepsy. Correspondingly, rapamycin inhibited the abnormal activation of the mammalian target of rapamycin pathway, astrogliosis, and neuronal disorganization, and increased brain size in Tsc1GFAPCKO mice. Interpretation Rapamycin has strong efficacy for preventing seizures and prolonging survival in Tsc1GFAPCKO mice. Ann Neurol 2008

579 citations


Journal ArticleDOI
TL;DR: The recent demonstration of functional interactions between cytokines and classical neurotransmitters such as glutamate and GABA, suggest the possibility that these interactions underlie the cytokine-mediated changes in neuronal excitability, thus promoting seizure phenomena and the associated neuropathology.
Abstract: Recent findings in experimental models and in the clinical setting highlight the possibility that inflammatory processes in the brain contribute to the etiopathogenesis of seizures and to the establishment of a chronic epileptic focus. Prototypical inflammatory cytokines such as IL-1 beta, TNF-alpha and IL-6 have been shown to be overexpressed in experimental models of seizures in brain areas of seizure generation and propagation, prominently by glia and to a lesser extent by neurons. Cytokines receptors are also upregulated, and the related intracellular signalling is activated, in both cell populations highlighting autocrine and paracrine actions of cytokines in the brain. Cytokines have been shown to profoundly affect seizures in rodents; in particular, IL-1 beta is endowed of proconvulsant activity in a large variety of seizure models. The recent demonstration of functional interactions between cytokines and classical neurotransmitters such as glutamate and GABA, suggest the possibility that these interactions underlie the cytokine-mediated changes in neuronal excitability, thus promoting seizure phenomena and the associated neuropathology. These findings point out at novel glio-neuronal communications in diseased conditions and highlight potential new targets for therapeutic intervention.

483 citations


Journal ArticleDOI
TL;DR: It is suggested that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE, and deficiency of this enzyme diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting.
Abstract: Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE.

271 citations


Journal ArticleDOI
TL;DR: It is demonstrated that upregulation of ADK and spontaneous focal electroencephalographic seizures were both restricted to the affected CA3, and suggested that astrocyte-based ADK provides a critical link between astrogliosis and neuronal dysfunction in epilepsy.
Abstract: Astrogliosis is a pathological hallmark of the epileptic brain. The identification of mechanisms that link astrogliosis to neuronal dysfunction in epilepsy may provide new avenues for therapeutic intervention. Here we show that astrocyte-expressed adenosine kinase (ADK), a key negative regulator of the brain inhibitory molecule adenosine, is a potential predictor and modulator of epileptogenesis. In a mouse model of focal epileptogenesis, in which astrogliosis is restricted to the CA3 region of the hippocampus, we demonstrate that upregulation of ADK and spontaneous focal electroencephalographic seizures were both restricted to the affected CA3. Furthermore, spontaneous seizures in CA3 were mimicked in transgenic mice by overexpression of ADK in this brain region, implying that overexpression of ADK without astrogliosis is sufficient to cause seizures. Conversely, after pharmacological induction of an otherwise epileptogenesis-precipitating acute brain injury, transgenic mice with reduced forebrain ADK were resistant to subsequent epileptogenesis. Likewise, ADK-deficient ES cell-derived brain implants suppressed astrogliosis, upregulation of ADK, and spontaneous seizures in WT mice when implanted after the epileptogenesis-precipitating brain injury. Our findings suggest that astrocyte-based ADK provides a critical link between astrogliosis and neuronal dysfunction in epilepsy.

229 citations


Journal ArticleDOI
TL;DR: A new era of adenosine-based therapies has begun, with the prospect to cover a wide range of neurological diseases, including epilepsy, chronic pain and cerebral ischemia.

211 citations


Journal ArticleDOI
TL;DR: ADK emerges both as a diagnostic marker to predict, as well as a prime therapeutic target to prevent, epileptogenesis.

210 citations


Journal ArticleDOI
TL;DR: The differential response patterns of astrocytes and microglial cells following pilocarpine‐induced seizures may signify their detrimental role in neuroinflammation after seizures.
Abstract: Astrocyte and microglial activation occurs following seizures and plays a role in epileptogenesis. However, the precise temporal and spatial response to seizures has not been fully examined. The pilocarpine model of temporal lobe epilepsy was selected to examine glial changes following seizures because morphological changes in the hippocampus closely mimic the human condition. Astrocytic and microglial changes in the hippocampus were examined during the first 5 days after pilocarpine-induced seizures in rats by analyzing GFAP, Iba1 and S100B-immunolabeling in CA1, CA3, and the hilus. Also, 3-dimensional reconstructions of microglial cells from the hilus and granule cell layer were analyzed. Lastly, astrocyte hypertrophy was examined in the hilus using electron microscopy. At 1 day after seizures and continuing throughout the 5 days examined, hypertrophied Iba1-labeled microglial cells and glial fibrillary acidic protein (GFAP)-labeled astrocytes were observed. At 1 and 2 days after seizures, significantly greater Iba1 immunolabeling was observed in CA1, CA3, and the hilus. In addition, both the area of Iba1 labeled processes and the number of their endings were increased in the hilus beginning at 1 day after seizures. S100B-immunolabeling was significantly elevated in CA3 at 1 day, in CA3 and CA1 at 2 days, and in all three hippocampal regions at 3 days after seizures. Electron microscopy confirmed astrocytic hypertrophy and demonstrated astrocytic cell bodies in the location where glial endfeet normally appear on capillaries. The differential response patterns of astrocytes and microglial cells following pilocarpine-induced seizures may signify their detrimental role in neuroinflammation after seizures.

205 citations


Journal ArticleDOI
TL;DR: This work sought to determine whether early treatment in a model of genetic epilepsy would reduce the severity of the epilepsy phenotype in adulthood.
Abstract: Purpose Current treatments for epilepsy may control seizures, but have no known effects on the underlying disease. We sought to determine whether early treatment in a model of genetic epilepsy would reduce the severity of the epilepsy phenotype in adulthood.

198 citations


Journal ArticleDOI
TL;DR: Development of neuropathological hallmarks of chronic epilepsy, such as subfield-specific neuron loss in the hippocampal formation and mossy fiber sprouting, was virtually completely absent in Cav3.2−/− mice and the appearance of spontaneous seizures was dramatically reduced in these mice.
Abstract: In both humans and animals, an insult to the brain can lead, after a variable latent period, to the appearance of spontaneous epileptic seizures that persist for life. The underlying processes, collectively referred to as epileptogenesis, include multiple structural and functional neuronal alterations. We have identified the T-type Ca(2+) channel Ca(v)3.2 as a central player in epileptogenesis. We show that a transient and selective upregulation of Ca(v)3.2 subunits on the mRNA and protein levels after status epilepticus causes an increase in cellular T-type Ca(2+) currents and a transitional increase in intrinsic burst firing. These functional changes are absent in mice lacking Ca(v)3.2 subunits. Intriguingly, the development of neuropathological hallmarks of chronic epilepsy, such as subfield-specific neuron loss in the hippocampal formation and mossy fiber sprouting, was virtually completely absent in Ca(v)3.2(-/-) mice. In addition, the appearance of spontaneous seizures was dramatically reduced in these mice. Together, these data establish transcriptional induction of Ca(v)3.2 as a critical step in epileptogenesis and neuronal vulnerability.

193 citations


Journal ArticleDOI
TL;DR: An overview on the current knowledge in this field is provided to discuss mechanistic hypotheses into the study of pathogenesis of epilepsy and recognize new potential therapeutic options.
Abstract: In the last decade, preclinical studies have provided a better characterization of the homeostatic and maladaptive mechanisms occurring either during the process of epileptogenesis or after the permanent epileptic state has emerged. Experimental evidence supported by clinical observations highlighted the possibility that brain inflammation is a common factor contributing, or predisposing, to the occurrence of seizures and cell death, in various forms of epilepsy of different etiologies. Expression of proinflammatory cytokines, as a hallmark of brain inflammation, has been demonstrated in glia in various experimental models of seizures and in human epilepsies. Experimental studies in rodents with perturbed cytokine systems indicate that these inflammatory mediators can alter neuronal excitability and affect cell survival by activating transcriptional and posttranslational intracellular pathways. This paper will provide an overview on the current knowledge in this field to discuss mechanistic hypotheses into the study of pathogenesis of epilepsy and recognize new potential therapeutic options.

Journal ArticleDOI
TL;DR: Mounting evidence supports the hypothesis that inflammation may contribute to epileptogenesis and cause neuronal injury in epilepsy, particularly childhood epilepsy.
Abstract: Inflammation is known to participate in the mediation of a growing number of acute and chronic neurological disorders. Even so, the involvement of inflammation in the pathogenesis of epilepsy and seizure-induced brain damage has only recently been appreciated. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, have been described in human epilepsy patients as well as in experimental models of epilepsy. For many decades, a functional role for brain inflammation has been implied by the effective use of anti-inflammatory treatments, such as steroids, in treating intractable pediatric epilepsy of diverse causes. Conversely, common pediatric infectious or autoimmune diseases are often accompanied by seizures during the course of illness. In addition, genetic susceptibility to inflammation correlated with an increased risk of epilepsy. Mounting evidence thus supports the hypothesis that inflammation may contribute to epileptogenesis and cause neuronal injury in epilepsy. We provide an overview of the current knowledge that implicates brain inflammation as a common predisposing factor in epilepsy, particularly childhood epilepsy.

Journal ArticleDOI
TL;DR: There is consensus that neuroprotective strategies need to be employed as quickly as possible after the onset of the SE or an IPI for considerable beneficial effects, and ideal strategies that are capable of facilitating repair and functional recovery of the brain after anIPI and preventing the evolution of IPI into chronic epilepsy are still hard to pin down.

Journal ArticleDOI
TL;DR: Data indicate an antiepileptogenic effect mediated by ICE inhibition and suggest that specific anti-IL-1beta pharmacological strategies can be envisaged to interfere with epileptogenic mechanisms.

Journal ArticleDOI
TL;DR: This article reviews the current knowledge on the pathology of the amygdala associated with epileptogenesis and/or epilepsy in TLE patients, and in animal models of TLE, and reviews the information available on the role of the glutamatergic and GABAergic systems in epileptogenic and epilepsy in the amygdala.

Journal ArticleDOI
TL;DR: This review critically analyzes both clinical and basic science evidence for overlapping mechanisms of epileptogenesis in this group of disorders, focusing on tuberous sclerosis complex, focal cortical dysplasia with balloon cells, and gangliogliomas.
Abstract: Malformations of cortical development (MCDs) are increasingly recognized as causes of medically intractable epilepsy. In order to develop more effective, rational therapies for refractory epilepsy related to MCDs, it is important to achieve a better understanding of the underlying mechanisms of epileptogenesis, but this is complicated by the wide variety of different radiographic, histopathological, and molecular features of these disorders. A subset of MCDs share a number of characteristic cellular and molecular abnormalities due to early defects in neuronal and glial proliferation and differentiation and have a particularly high incidence of epilepsy, suggesting that this category of MCDs with abnormal glioneuronal proliferation may also share a common set of primary mechanisms of epileptogenesis. This review critically analyzes both clinical and basic science evidence for overlapping mechanisms of epileptogenesis in this group of disorders, focusing on tuberous sclerosis complex, focal cortical dysplasia with balloon cells, and gangliogliomas. Specifically, the role of lesional versus perilesional regions, circuit versus cellular/molecular defects, and nonneuronal factors, such as astrocytes, in contributing to epileptogenesis in these MCDs is examined. An improved understanding of these various factors involved in epileptogenesis has direct clinical implications for optimizing current treatments or developing novel therapeutic approaches for epilepsy in these disorders.

Journal ArticleDOI
TL;DR: Potential mechanisms that elucidate a critical role for AMPA receptors (AMPARs) in epileptogenesis during this critical period in the developing brain are identified and a novel therapeutic target in the highly seizure-prone developing brain is offered.
Abstract: The highest incidence of seizures during lifetime is found in the neonatal period and neonatal seizures lead to a propensity for epilepsy and long-term cognitive deficits. Here, we identify potential mechanisms that elucidate a critical role for AMPA receptors (AMPARs) in epileptogenesis during this critical period in the developing brain. In a rodent model of neonatal seizures, we have shown previously that administration of antagonists of the AMPARs during the 48 h after seizures prevents long-term increases in seizure susceptibility and seizure-induced neuronal injury. Hypoxia-induced seizures in postnatal day 10 rats induce rapid and reversible alterations in AMPAR signaling resembling changes implicated previously in models of synaptic potentiation in vitro. Hippocampal slices removed after hypoxic seizures exhibited potentiation of AMPAR-mediated synaptic currents, including an increase in the amplitude and frequency of spontaneous and miniature EPSCs as well as increased synaptic potency. This increased excitability was temporally associated with a rapid increase in phosphorylation at GluR1 S845/S831 and GluR2 S880 sites and increased activity of the protein kinases CaMKII (calcium/calmodulin-dependent protein kinase II), PKA, and PKC, which mediate the phosphorylation of these AMPAR subunits. Post-seizure administration of AMPAR antagonists NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline), topiramate, or GYKI-53773 [(1)-1-(4-aminophenyl)-3-acetyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine] attenuated the AMPAR potentiation, phosphorylation, and kinase activation and prevented the concurrent increase in in vivo seizure susceptibility. Thus, the potentiation of AMPAR-containing synapses is a reversible, early step in epileptogenesis that offers a novel therapeutic target in the highly seizure-prone developing brain.

Journal ArticleDOI
01 Jun 2008-Brain
TL;DR: The data show that this gene therapy strategy decreases spontaneous seizures and suppresses their progression in chronic epileptic rats, thus representing a promising new therapeutic strategy.
Abstract: Temporal lobe epilepsy remains amongst the most common and drug refractory of neurological disorders. Gene therapy may provide a realistic therapeutic approach alternative to surgery for intractable focal epilepsies. To test this hypothesis, we applied here a gene therapy approach, using a recombinant adeno-associated viral (rAAV) vector expressing the human neuropeptide Y (NPY) gene, to a progressive and spontaneous seizure model of temporal lobe epilepsy induced by electrical stimulation of the temporal pole of the hippocampus, which replicates many features of the human condition. rAAV-NPY or a control vector lacking the expression cassette (rAAV-Empty) was delivered into the epileptic rat hippocampi at an early progressive stage of the disease. Chronic epileptic rats were video-EEG monitored to establish pre-injection baseline recordings of spontaneous seizures and the effect of rAAV-NPY versus rAAV-Empty vector injection. Both non-injected stimulated controls and rAAV-empty injected rats showed a similar progressive increase of spontaneous seizure frequency consistent with epileptogenesis. The delivery of rAAV-NPY in epileptic rat brain leads to a remarkable decrease in the progression of seizures as compared to both control groups and this effect was correlated with the NPY over-expression in the hippocampus. Moreover, spontaneous seizure frequency was significantly reduced in 40% of treated animals as compared to their pre-injection baseline. Our data show that this gene therapy strategy decreases spontaneous seizures and suppresses their progression in chronic epileptic rats, thus representing a promising new therapeutic strategy.

Journal ArticleDOI
TL;DR: The data suggest that the direction of GABAA-receptor signaling may be a determining factor for the age and sex-specific effects of prolonged seizures in the hippocampus, because they relate to normal brain development and possibly epileptogenesis.
Abstract: Early in development, the depolarizing GABAAergic signaling is needed for normal neuronal differentiation. It is shown here that hyperpolarizing reversal potentials of GABAAergic postsynaptic currents (EGABA) appear earlier in female than in male rat CA1 pyramidal neurons because of increased potassium chloride cotransporter 2 (KCC2) expression and decreased bumetanide-sensitive chloride transport in females. Three episodes of neonatal kainic acid-induced status epilepticus (3KA-SE), each elicited at postnatal days 4 (P4)–P6, reverse the direction of GABAAergic responses in both sexes. In males, 3KA-SE trigger a premature appearance of hyperpolarizing GABAAergic signaling at P9, instead of P14. This is driven by an increase in KCC2 expression and decrease in bumetanide-sensitive chloride cotransport. In 3KA-SE females, EGABA transiently becomes depolarizing at P8–P13 because of increase in the activity of a bumetanide-sensitive NKCC1 (sodium potassium chloride cotransporter 1)-like chloride cotransporter. However, females regain their hyperpolarizing GABAAergic signaling at P14 and do not manifest spontaneous seizures in adulthood. In maternally separated stressed controls, a hyperpolarizing shift in EGABA was observed in both sexes, associated with decreased bumetanide-sensitive chloride cotransport, whereas KCC2 immunoreactivity was increased in males only. GABAA receptor blockade at the time of 3KA-SE or maternal separation reversed their effects on EGABA. These data suggest that the direction of GABAA-receptor signaling may be a determining factor for the age and sex-specific effects of prolonged seizures in the hippocampus, because they relate to normal brain development and possibly epileptogenesis. These effects differ from the consequences of severe stress.

Journal ArticleDOI
TL;DR: A mouse model of unilateral hippocampal-dominant neuronal damage and short latency epileptogenesis that may be suitable for studying the cell and molecular pathogenesis of human mesial temporal lobe epilepsy is characterized.

Journal ArticleDOI
TL;DR: Advances in small animal PET scanning allow the in vivo study of the process of epileptogenesis, starting from an initial brain insult to the development of seizures, in animal models of epilepsy.

Journal ArticleDOI
TL;DR: In vivo electrophysiologic studies suggest that the hippocampus of these animals may not be “epileptic,” and studies using continuous video monitoring to detect spontaneous behavioral seizures indicate that these rats become epileptic soon after insult, before any delayed secondary processes have time to develop.
Abstract: Prolonged chemoconvulsant-induced status epilepticus in rats has long been promoted as an animal model of mesial temporal lobe epilepsy with hippocampal sclerosis, under the assumption that these animals involve: (1) pathology similar to that of the human neurologic condition; (2) a seizure-free, "preepileptic" latent period of several weeks duration after injury, during which a secondary epileptogenic process gradually develops; and (3) a chronic epileptic state in which the hippocampus, in general, and the dentate gyrus, in particular, becomes a source of the spontaneous behavioral seizures that define these animals as "epileptic." Retrospective analysis suggests that all of these assumptions are in doubt. Neuropathologic studies have shown that prolonged status epilepticus causes greater extrahippocampal than hippocampal damage, and does not produce classic hippocampal sclerosis. In vivo electrophysiologic studies suggest that the hippocampus of these animals may not be "epileptic." Most importantly, studies using continuous video monitoring to detect spontaneous behavioral seizures indicate that these rats become epileptic soon after insult, before any delayed secondary processes have time to develop. High mortality, significant variability, and the lack of an extended "therapeutic window" after brain injury suggest the need to develop animal models that more closely resemble the human neurologic condition.

Journal ArticleDOI
TL;DR: The data suggest that epileptogenesis in rats with kainic acid‐induced chronic seizures is associated with the collapse of extracellular glutamate regulation caused by both molecular down‐regulation and functional failure of glutamate transport.
Abstract: We used northern and western blotting to measure the quantity of glutamate and GABA transporters mRNA and their proteins within the hippocampal tissue of rats with epileptogenesis. Chronic seizures were induced by amygdalar injection of kainic acid 60 days before death. We found that expression of the mRNA and protein of the glial glutamate transporters GLAST and GLT-1 were down-regulated in the kainic acid-administered group. In contrast, EAAC-1 and GAT-3 mRNA and their proteins were increased, while GAT-1 mRNA and protein were not changed. We performed in vivo microdialysis in the freely moving state. During the interictal state, the extracellular glutamate concentration was increased, whereas the GABA level was decreased in the kainic acid group. Following potassium-induced depolarization, glutamate overflow was higher and the recovery time to the basal release was prolonged in the kainic acid group relative to controls. Our data suggest that epileptogenesis in rats with kainic acid-induced chronic seizures is associated with the collapse of extracellular glutamate regulation caused by both molecular down-regulation and functional failure of glutamate transport.

Journal ArticleDOI
TL;DR: Increased oxidative mtDNA damage, mitochondrial H2O2 production and alterations in the mtBER pathway provide evidence for mitochondrial oxidative stress in epilepsy and suggest that mitochondrial injury may contribute to epileptogenesis.

Journal ArticleDOI
TL;DR: A rapidly increasing but largely anecdotal body of literature reports success in seizure control at the price of relatively few complications with the clinical use of those agents in refractory SE.
Abstract: We review recent advances in our understanding and treatment of status epilepticus (SE). Repeated seizures cause an internalization of gamma-aminobutyric acid (GABA)(A) receptors, together with a movement of N-methyl-d-aspartate (NMDA) receptors to the synapse. As a result, the response of experimental SE to treatment with GABAergic drugs (but not with NMDA antagonists) fades with increasing seizure duration. Prehospital treatment, which acts before these changes are established, is finding increased acceptance, and solid evidence of its efficacy is available, particularly in children. Rational polypharmacy aims at multiple receptors or ion channels to increase inhibition and simultaneously reduce excitation. Combining GABA(A) agonists with NMDA antagonists and with agents acting at other sites is successful in treating experimental SE, and in reducing SE-induced brain damage and epileptogenesis. The relevance of these experimental data to clinical SE is actively debated. Valproate and levetiracetam have recently become available for intravenous use, and the use of ketamine and of other agents (topiramate, felbamate, etc.) have seen renewed interest. A rapidly increasing but largely anecdotal body of literature reports success in seizure control at the price of relatively few complications with the clinical use of those agents in refractory SE.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the contribution of ECM molecules to different forms of plasticity, including developmental plasticity in the cortex, long-term potentiation and depression in the hippocampus, homeostatic scaling of synaptic transmission and metaplasticity.
Abstract: Extracellular matrix (ECM) in the brain is composed of molecules synthesized and secreted by neurons and glial cells in a cell-type-specific and activity-dependent manner. During development, ECM plays crucial roles in proliferation, migration and differentiation of neural cells. In the mature brain, ECM undergoes a slow turnover and supports multiple physiological processes, while restraining structural plasticity. In the first part of this review, we discuss the contribution of ECM molecules to different forms of plasticity, including developmental plasticity in the cortex, long-term potentiation and depression in the hippocampus, homeostatic scaling of synaptic transmission and metaplasticity. In the second part, we focus on pathological changes associated with epileptogenic mutations in ECM-related molecules or caused by seizure-induced remodeling of ECM. The available data suggest that ECM components regulating physiological plasticity are also engaged in different aspects of epileptogenesis, such as dysregulation of excitatory and inhibitory neurotransmission, sprouting of mossy fibers, granule cell dispersion and gliosis. At the end, we discuss combinatorial approaches that might be used to counteract seizure-induced dysregulation of both ECM molecules and extracellular proteases. By restraining ECM modification and preserving the status quo in the brain, these treatments might prove to be valid therapeutic interventions to antagonize the progression of epileptogenesis.

Journal ArticleDOI
TL;DR: The epilepsy phenotype of Drosophila seizure-sensitive mutants is reviewed, a novel class of genes called seizure-suppressors are described, and an unexpected class of anti-epileptic drugs has been identified.

Journal ArticleDOI
Xiubin Li1, Jueqian Zhou1, Ziyi Chen1, Shuda Chen1, Feiqi Zhu, Liemin Zhou1 
TL;DR: Investigation of the long-term expression profiles of NKCC1 and KCC2 in CA1 region in the mice model of lithium-pilocarpine induced status epilepticus and their relationship with epileptogenesis found some expressional changes, which may provide new drug targets for development of new antiepileptic medicine.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of hyperpolarization-activated cyclic nucleotide-gated cation channel (HCNgC) in the pathogenesis of temporal lobe epilepsy (TLE).
Abstract: PURPOSE: Studies in animal models and patients have implicated changes in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the pathogenesis of temporal lobe epilepsy (TLE). However, the nature of HCN changes during the epileptogenic process and their commonality across different TLE models is unknown. Here HCN1 and HCN2 mRNA expression was quantitatively measured at different time points during epileptogenesis in two distinct animal models of TLE; the kainic acid (KA)-induced status epilepticus (SE) and amygdala kindling models. METHODS: Hippocampal subregions (CA1, CA3, and dentate gyrus [DG]) and entorhinal cortex were dissected at different time-points. For KA-induced SE animals this was 24 h, 7 days (preepileptic), and 6 weeks (epileptic) post status. For amygdala kindling animals this was 2 weeks after reaching either "partially kindled" (one class II/III seizure) or "fully kindled" (five class V seizures) states. Quantification of regional hippocampal neuronal loss in the KA-treated animals was done using NeuN immunofluorescence and confocal microscopy. RESULTS: HCN mRNA levels decreased in an isoform and region specific manner at all time points after KA-induced SE. The decrease in neuronal number could not account for all reductions in HCN mRNA levels post-KA insult, implicating transcriptional changes. A reduction in HCN2 mRNA levels was also observed in fully kindled animals in the CA3 region. CONCLUSIONS: A reduction in HCN mRNA levels is present in two different models of TLE. This supports the case that a reduction in HCN channel expression is an accompaniment of epileptogenesis in different adult models of TLE.

Journal ArticleDOI
TL;DR: Erythropoietin has neuron and astroglial protective effects via reduction of tissue‐injuring molecules such as reactive oxygen species, glutamate, inflammatory cytokines, and other damaging molecules that could modulate the altered microenvironment in the epileptic rat brain.
Abstract: Summary Purpose: Erythropoietin (EPO) has neuron and astroglial protective effects via reduction of tissue-injuring molecules such as reactive oxygen species, glutamate, inflammatory cytokines, and other damaging molecules. Although EPO may constitute an effective therapeutic modality in cases of epileptic insult, no study has been performed on the effects of exogenous EPO on the chronic seizure formation. In this study, we attempted to investigate if EPO could modulate the altered microenvironment in the epileptic rat brain. Methods: Morphological changes in the hippocampi of rats subjected to lithium-pilocarpine-induced status epilepticus (SE) were examined with respect to neuronal loss, inflammation, blood–brain barrier (BBB) leakage, and cell genesis. Spontaneous recurrent seizures (SRSs) were investigated by long-term video-EEG monitoring. Results: EPO receptor (EPOR) was found to be increased in the hippocampus after SE. Administered EPO prevented, during the latent period following SE, BBB leakage, neuronal death, and microglia activation in the dentate hilus, CA1, and CA3, and inhibited the generation of ectopic granule cells in the hilus and new glia in CA1. Moreover, EPO reduced the risk of SRS development. Discussion: These findings suggest that EPO has a potential therapeutic role in the setting of acute epileptic insults.