scispace - formally typeset
Search or ask a question

Showing papers on "Gravitational field published in 2011"


Journal ArticleDOI
TL;DR: In this article, the authors considered a modified theory of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and of the trace of the stress-energy tensor.
Abstract: We consider $f(R,T)$ modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar $R$ and of the trace of the stress-energy tensor $T$. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. Generally, the gravitational field equations depend on the nature of the matter source. The field equations of several particular models, corresponding to some explicit forms of the function $f(R,T)$, are also presented. An important case, which is analyzed in detail, is represented by scalar field models. We write down the action and briefly consider the cosmological implications of the $f(R,{T}^{\ensuremath{\phi}})$ models, where ${T}^{\ensuremath{\phi}}$ is the trace of the stress-energy tensor of a self-interacting scalar field. The equations of motion of the test particles are also obtained from a variational principle. The motion of massive test particles is nongeodesic, and takes place in the presence of an extra-force orthogonal to the four velocity. The Newtonian limit of the equation of motion is further analyzed. Finally, we provide a constraint on the magnitude of the extra acceleration by analyzing the perihelion precession of the planet Mercury in the framework of the present model.

1,833 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a heuristic argument that shows that Newton's law of gravitation naturally arises in a theory in which space emerges through a holographic scenario and gravity is identified with an entropic force caused by changes in the information associated with the positions of material bodies.
Abstract: Starting from first principles and general assumptions we present a heuristic argument that shows that Newton’s law of gravitation naturally arises in a theory in which space emerges through a holographic scenario. Gravity is identified with an entropic force caused by changes in the information associated with the positions of material bodies. A relativistic generalization of the presented arguments directly leads to the Einstein equations. When space is emergent even Newton’s law of inertia needs to be explained. The equivalence principle auggests that it is actually the law of inertia whose origin is entropic.

1,616 citations


Journal ArticleDOI
Stefan Hild1, M. R. Abernathy1, Fausto Acernese2, Pau Amaro-Seoane3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia, Mark Beker, N. Beveridge1, S. Birindelli6, Suvadeep Bose7, L. Bosi, S. Braccini8, C. Bradaschia8, Tomasz Bulik9, Enrico Calloni10, Giancarlo Cella8, E. Chassande Mottin, S. Chelkowski11, Andrea Chincarini, James S. Clark12, E. Coccia13, C. Colacino8, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, R. De Salvo15, T. Dent12, R. De Rosa10, L. Di Fiore10, A. Di Virgilio8, M. Doets16, V. Fafone13, Paolo Falferi17, R. Flaminio, J. Franc, F. Frasconi8, Andreas Freise11, D. Friedrich18, Paul Fulda11, Jonathan R. Gair19, Gianluca Gemme, E. Genin, A. Gennai11, A. Giazotto8, Kostas Glampedakis20, Christian Gräf3, M. Granata, Hartmut Grote3, G. M. Guidi21, A. Gurkovsky14, G. D. Hammond1, Mark Hannam12, Jan Harms15, D. Heinert22, Martin Hendry1, Ik Siong Heng1, E. Hennes, J. H. Hough, Sascha Husa23, S. H. Huttner1, G. T. Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas20, Badri Krishnan3, Tjonnie G. F. Li, M. Lorenzini, H. Lück3, Ettore Majorana, Ilya Mandel24, Vuk Mandic25, M. Mantovani8, I. W. Martin1, Christine Michel, Y. Minenkov13, N. Morgado, S. Mosca10, B. Mours26, Helge Müller-Ebhardt18, P. G. Murray1, Ronny Nawrodt1, Ronny Nawrodt22, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, Angela Delli Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, R. Passaquieti8, D. Passuello8, Laurent Pinard, Wolfango Plastino29, Rosa Poggiani28, Rosa Poggiani8, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling16, P. Rapagnani30, Jocelyn Read31, Tania Regimbau6, H. Rehbein3, S. Reid1, F. Ricci30, F. Richard, A. Rocchi, Sheila Rowan1, A. Rüdiger3, Lucía Santamaría15, Benoit Sassolas, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz22, Paul Seidel22, Alicia M. Sintes23, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin18, Andre Thüring3, J. F. J. van den Brand16, M. van Veggel1, C. Van Den Broeck, Alberto Vecchio11, John Veitch12, F. Vetrano21, A. Viceré21, S. P. Vyatchanin14, Benno Willke3, Graham Woan1, Kazuhiro Yamamoto 
TL;DR: In this article, a special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates, including the most relevant fundamental noise contributions.
Abstract: Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

682 citations


Journal ArticleDOI
TL;DR: In this article, three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods.
Abstract: Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10 cm in terms of geoid heights, and 3 mGal in terms of gravity anomalies, globally at a resolution of 100 km (degree/order 200).

487 citations


Journal ArticleDOI
01 Jan 2011-Icarus
TL;DR: In this article, the high frequency portion of the spherical harmonic Mars gravity field was improved by tracking data collection from the MRO spacecraft, and the new JPL Mars gravity fields, MRO110B and MRO 110B2, show resolution near degree 90.

363 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of scalar density perturbations in the presence of non-relativistic matter minimally coupled to gravity were derived under a quasi-static approximation on sub-horizon scales.

272 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics.
Abstract: Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present standard model of particle physics become accessible to experimental investigation. Because of the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our Universe. First addressed in this article, in both theory and experiment, is the problem of baryogenesis, the mechanism behind the evident dominance of matter over antimatter in the Universe. The question of how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then the recent spectacular observation of neutron quantization in the Earth's gravitational field and of resonance transitions between such gravitational energy states is discussed. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra dimensions that propose unification of the Planck scale with the scale of themore » standard model. These experiments start closing the remaining ''axion window'' on new spin-dependent forces in the submillimeter range. Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron-decay data. Up until now, about 10 different neutron-decay observables have been measured, much more than needed in the electroweak standard model. This allows various precise tests for new physics beyond the standard model, competing with or surpassing similar tests at high energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the ''first three minutes'' and later on in stellar nucleosynthesis.« less

228 citations


Journal ArticleDOI
TL;DR: In this paper, the existence of relativistic stars in f(T) modified gravity was examined and several classes of static perfect fluid solutions were explicitly constructed, among which negative pressure solutions, and an interesting class of polynomial solutions.
Abstract: We examine the existence of relativistic stars in f(T) modified gravity and explicitly construct several classes of static perfect fluid solutions. We derive the conservation equation from the complete f(T) gravity field equations and present the differences with its teleparallel counterpart. Firstly, we choose the tetrad field in the diagonal gauge and study the resulting field equations. Some exact solutions are explicitly constructed and it is noted that these solutions have to give a constant torsion scalar. Next, we choose a non diagonal tetrad field which results in field equations similar to those of general relativity. For specific models we are able to construct exact solutions of these field equations. Among those new classes of solutions, we find negative pressure solutions, and an interesting class of polynomial solutions.

227 citations


Journal ArticleDOI
TL;DR: The European Space Agency's Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009 as mentioned in this paper, aiming at a better understanding of the Earth system.
Abstract: The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users.

226 citations


Journal ArticleDOI
TL;DR: In this article, the existence of relativistic stars in f(T) modified gravity was examined and several classes of static perfect fluid solutions were explicitly constructed, among which negative pressure solutions, and an interesting class of polynomial solutions.
Abstract: We examine the existence of relativistic stars in f(T) modified gravity and explicitly construct several classes of static perfect fluid solutions. We derive the conservation equation from the complete f(T) gravity field equations and present the differences with its teleparallel counterpart. Firstly, we choose the tetrad field in the diagonal gauge and study the resulting field equations. Some exact solutions are explicitly constructed and it is noted that these solutions have to give a constant torsion scalar. Next, we choose a non diagonal tetrad field which results in field equations similar to those of general relativity. For specific models we are able to construct exact solutions of these field equations. Among those new classes of solutions, we find negative pressure solutions, and an interesting class of polynomial solutions.

210 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of repulsive gravity are discussed by finding all the circles at which a particle can have vanishing angular momentum, and the geometric structure of stable accretion disks, made of only test particles moving along circular orbits around the central body, allows us to clearly distinguish between black holes and naked singularities.
Abstract: We investigate the circular motion of charged test particles in the gravitational field of a charged mass described by the Reissner-Nordstr\"om (RN) spacetime. We study in detail all the spatial regions where circular motion is allowed around either black holes or naked singularities. The effects of repulsive gravity are discussed by finding all the circles at which a particle can have vanishing angular momentum. We show that the geometric structure of stable accretion disks, made of only test particles moving along circular orbits around the central body, allows us to clearly distinguish between black holes and naked singularities.

Journal ArticleDOI
TL;DR: This work investigates theoretically the sedimentation of self-propelled particles undergoing translational and rotational diffusion and finds that the dynamics of the active suspension can be derived from a generalized free energy functional.
Abstract: Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the sedimentation length increases quadratically with the swimming speed of the active Brownian particles. Here we investigate theoretically the sedimentation of self-propelled particles undergoing translational and rotational diffusion. We find that the measured increase of the sedimentation length is coupled to a partial alignment of the suspension with the mean swimming direction oriented against the gravitational field. We suggest realistic parameter values to observe this polar order. Furthermore, we find that the dynamics of the active suspension can be derived from a generalized free energy functional.

Journal ArticleDOI
TL;DR: In this article, an experiment that probes the transitions between quantum states of neutrons in the Earth's gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead to sensitive fundamental tests of gravity laws.
Abstract: Spectroscopic techniques are mostly used to study the interaction between matter and electromagnetic fields. Here, an experiment that probes the transitions between quantum states of neutrons in the Earth’s gravitational field demonstrates an exotic variant of spectroscopy, and one that might lead to sensitive fundamental tests of gravity laws. Spectroscopy is a method typically used to assess an unknown quantity of energy by means of a frequency measurement. In many problems, resonance techniques1,2 enable high-precision measurements, but the observables have generally been restricted to electromagnetic interactions. Here we report the application of resonance spectroscopy to gravity. In contrast to previous resonance methods, the quantum mechanical transition is driven by an oscillating field that does not directly couple an electromagnetic charge or moment to an electromagnetic field. Instead, we observe transitions between gravitational quantum states when the wave packet of an ultra-cold neutron couples to the modulation of a hard surface as the driving force. The experiments have the potential to test the equivalence principle3 and Newton’s gravity law at the micrometre scale4,5.

Book
17 Oct 2011
TL;DR: In this paper, a brief review of General Relativity is given, along with a brief analysis of the sources of gravitational radiation and sources of sources of Gravitational Wave detectors. And a detailed discussion of the relationship between the two sources of information is provided.
Abstract: Introduction Prologue: Tides in Newton's gravity/Relativity 1. A brief review of General Relativity 2. Gravitational waves 3. Beyond the Newtonian limit 4. Sources of gravitational radiation 5. Gravitational wave detectors 6. Gravitational wave data analysis Epilogue: Gravitational wave astronomy and astrophysics A. Gravitational wave detector data B. Post-Newtonian Binary Inspiral Waveform

Journal ArticleDOI
TL;DR: In this article, the authors investigate the motion of neutral test particles in the gravitational field of a mass with charge $Q$ described by the Reissner-Nordstrom (RN) spacetime.
Abstract: We investigate the motion of neutral test particles in the gravitational field of a mass $M$ with charge $Q$ described by the Reissner-Nordstr\"om (RN) spacetime. We focus on the study of circular stable and unstable orbits around configurations describing either black holes or naked singularities. We show that at the classical radius, defined as ${Q}^{2}/M$, there exist orbits with zero angular momentum due to the presence of repulsive gravity. The analysis of the stability of circular orbits indicates that black holes are characterized by a continuous region of stability. In the case of naked singularities, the region of stability can split into two nonconnected regions inside which test particles move along stable circular orbits.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the Fermi-Hubbard Hamiltonian describing the physics of ultracold atoms on optical lattices in the presence of artificial non-Abelian gauge fields is exactly equivalent to the gauge theory Hamiltonian described Dirac fermions in the lattice.
Abstract: We argue that the Fermi–Hubbard Hamiltonian describing the physics of ultracold atoms on optical lattices in the presence of artificial non-Abelian gauge fields is exactly equivalent to the gauge theory Hamiltonian describing Dirac fermions in the lattice. We show that it is possible to couple the Dirac fermions to an 'artificial' gravitational field, i.e. to consider the Dirac physics in a curved spacetime. We identify the special class of spacetime metrics that admit a simple realization in terms of a Fermi–Hubbard model subjected to an artificial SU(2) field, corresponding to position-dependent hopping matrices. As an example, we discuss in more detail the physics of the 2+1D Rindler metric and its possible experimental realization and detection.

Journal ArticleDOI
TL;DR: In this article, a set of independent tests based on satellite orbit determination and geoid comparisons is applied to evaluate the performance of three GOCE-based gravity field solutions and a number of selected pre-launch models.
Abstract: Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain independent external quality parameters and to assess the current performance of these models, a set of independent tests based on satellite orbit determination and geoid comparisons is applied. Both test methods can be regarded as complementary because they either investigate the performance in the long wavelength spectral domain (orbit determination) or in the spatial domain (geoid comparisons). The test procedure was applied to the three GOCE gravity field solutions and to a number of selected pre-launch models for comparison. Orbit determination results suggest, that a pure GOCE gravity field model does not outperform the multi-year GRACE gravity field solutions. This was expected as GOCE is designed to improve the determination of the medium to high frequencies of the Earth gravity field (in the range of degree and order 50 to 200). Nevertheless, in case of an optimal combination of GOCE and GRACE data, orbit determination results should not deteriorate. So this validation procedure can also be used for testing the optimality of the approach adopted for producing combined GOCE and GRACE models. Results from geoid comparisons indicate that with the 2 months of GOCE data a significant improvement in the determination of the spherical harmonic spectrum of the global gravity field between degree 50 and 200 can be reached. Even though the ultimate mission goal has not yet been reached, especially due to the limited time span of used GOCE data (only 2 months), it was found that existing satellite-only gravity field models, which are based on 7 years of GRACE data, can already be enhanced in terms of spatial resolution. It is expected that with the accumulation of more GOCE data the gravity field model resolution and quality can be further enhanced, and the GOCE mission goal of 1–2 cm geoid accuracy with 100 km spatial resolution can be achieved.

Journal ArticleDOI
08 Jul 2011
TL;DR: In this paper, the theoretical evidence suggests that gravity is an emergent phenomenon like gas dynamics or elasticity with the gravitational field equations having the same status as, say, the equations of fluid dynamics/elasticity.
Abstract: I present the theoretical evidence which suggests that gravity is an emergent phenomenon like gas dynamics or elasticity with the gravitational field equations having the same status as, say, the equations of fluid dynamics/elasticity. This paradigm views a wide class of gravitational theories – including Einstein's theory – as describing the thermodynamic limit of the statistical mechanics of 'atoms of spacetime'. Strong internal evidence in favour of such a point of view is presented using the classical features of the gravitational theories with just one quantum mechanical input, viz. the existence of Davies-Unruh temperature of horizons. I discuss several conceptual ingredients of this approach.

Journal ArticleDOI
TL;DR: In this article, it was shown that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the $f(T)$ gravity framework must be static and the conclusion is independent of the radial distribution and spheric symmetric motion of the source matter that is, whether it is in motion or static.
Abstract: Generalized from the so-called teleparallel gravity which is exactly equivalent to general relativity, the $f(T)$ gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the $f(T)$ gravity framework must be static and the conclusion is independent of the radial distribution and spherically symmetric motion of the source matter that is, whether it is in motion or static. As a consequence, the Birkhoff's theorem is valid in the general $f(T)$ theory. We also discuss its application in the de Sitter space-time evolution phase as preferred to by the nowadays dark energy observations.

Journal Article
TL;DR: In this paper, the authors proposed a new series of global gravity models computed by the GOCO consortium, which consists of two months of GOCE gradiometry data and the most recent GRACE-only model ITG-Grace2010s.
Abstract: The new series of global gravity models computed by the GOCO consortium started with the release of the satellite-only model GOCO01S in July 2010. The model has a resolution of degree and order 224 and is composed by two months of GOCE gradiometry data and the most recent GRACE-only model ITG-Grace2010s, which contains seven years of observations. The low to medium degrees of GOCO01S are primarily determined by GRACE, whereas the GOCE gradiometry measurements start to significantly contribute at degree 100. Beyond degree 150, the combined model is dominated by GOCE.

Journal ArticleDOI
Mark Wyman1
TL;DR: This Letter points out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing and says that stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
Abstract: The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.

Journal ArticleDOI
TL;DR: In this article, the authors used high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively.
Abstract: The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn’s framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.

Journal ArticleDOI
TL;DR: In this paper, a plane-fronted wave metric with a cosmological constant was proposed to solve both the full quadratic gravity field equations and linearized ones, including the linearized equations of the recently found critical gravity.
Abstract: We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane-fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their logarithmic behavior.

Journal ArticleDOI
TL;DR: In this article, the authors derived Lorentz force and Maxwell's equations on kappa-Minkowski space-time up to the first order in the deformation parameter.
Abstract: In this paper, we derive Lorentz force and Maxwell's equations on kappa-Minkowski space-time up to the first order in the deformation parameter. This is done by elevating the principle of minimal coupling to noncommutative space-time. We also show the equivalence of minimal coupling prescription and Feynman's approach. It is shown that the motion in kappa space-time can be interpreted as motion in a background gravitational field, which is induced by this noncommutativity. In the static limit, the effect of kappa deformation is to scale the electric charge. We also show that the laws of electrodynamics depend on the mass of the charged particle, in kappa space-time.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of the GOCE Level 2 gravitational gradients in the gradiometer reference frame (GRF) and the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation.
Abstract: GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V XX , V YY , V ZZ and V XZ are much more accurate than V XY and V YZ , and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10?3 level. Furthermore, we found that the error of V XX and V YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V ZZ error is a factor of 2–3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2–35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained.

Journal ArticleDOI
TL;DR: The post-Newtonian approximation is a method for solving Einstein’s field equations for physical systems in which motions are slow compared to the speed of light and where gravitational fields are weak, and it has proven to be remarkably effective in describing certain strong-field, fast-motion systems.
Abstract: The post-Newtonian approximation is a method for solving Einstein’s field equations for physical systems in which motions are slow compared to the speed of light and where gravitational fields are weak. Yet it has proven to be remarkably effective in describing certain strong-field, fast-motion systems, including binary pulsars containing dense neutron stars and binary black hole systems inspiraling toward a final merger. The reasons for this effectiveness are largely unknown. When carried to high orders in the post-Newtonian sequence, predictions for the gravitational-wave signal from inspiraling compact binaries will play a key role in gravitational-wave detection by laser-interferometric observatories.

Journal ArticleDOI
TL;DR: In this article, a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework is presented, where all departures of the geometry from Minkowski are brought about by quantum mechanics alone.
Abstract: We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.

Journal ArticleDOI
TL;DR: This work has investigated two methods used in commercial practice to process airborne full-tensor gravity gradient data and found that the methods result in enhanced, noise-reduced estimates of the tensor.
Abstract: As the demand for high-resolution gravity gradient data increases and surveys are undertaken over larger areas, new challenges for data processing have emerged. In the case of full-tensor gradiometry, the processor is faced with multiple derivative measurements of the gravity field with useful signal content down to a few hundred meters’ wavelength. Ideally, all measurement data should be processed together in a joint scheme to exploit the fact that all components derive from a common source. We have investigated two methods used in commercial practice to process airborne full-tensor gravity gradient data; the methods result in enhanced, noise-reduced estimates of the tensor. The first is based around Fourier operators that perform integration and differentiation in the spatial frequency domain. By transforming the tensor measurements to a common component, the data can be combined in a way that reduces noise. The second method is based on the equivalent-source technique, where all measurements are invert...

Journal ArticleDOI
TL;DR: In this article, the authors argue that experiments with ultracold neutrons in the gravitational field of Earth disprove recent speculations on the entropic origin of gravitation.
Abstract: We argue that experiments with ultracold neutrons in the gravitational field of Earth disprove recent speculations on the entropic origin of gravitation.

Journal ArticleDOI
TL;DR: In this article, it was shown that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T) gravity framework must be static.
Abstract: Generalized from the so-called teleparallel gravity, which is exactly equivalent to general relativity, f(T) gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T) gravity framework must be static. The conclusion is independent of the radial distribution and spherically symmetric motion of the source matter, that is, whether it is in motion or static. As a consequence, the Birkhoff’s theorem is valid in the general nonsingular f(T) theory at the un-perturbative level. We also discuss its application in the de Sitter spacetime evolution phase as preferred by present dark energy observations.