scispace - formally typeset
Search or ask a question

Showing papers on "Motor neuron published in 2015"


Journal ArticleDOI
TL;DR: It is shown that HERV-K is activated in a subpopulation of patients with sporadic amyotrophic lateral sclerosis (ALS) and that its envelope (env) protein may contribute to neurodegeneration and disease pathogenesis.
Abstract: The role of human endogenous retroviruses (HERVs) in disease pathogenesis is unclear. We show that HERV-K is activated in a subpopulation of patients with sporadic amyotrophic lateral sclerosis (ALS) and that its envelope (env) protein may contribute to neurodegeneration. The virus was expressed in cortical and spinal neurons of ALS patients, but not in neurons from control healthy individuals. Expression of HERV-K or its env protein in human neurons caused retraction and beading of neurites. Transgenic animals expressing the env gene developed progressive motor dysfunction accompanied by selective loss of volume of the motor cortex, decreased synaptic activity in pyramidal neurons, dendritic spine abnormalities, nucleolar dysfunction, and DNA damage. Injury to anterior horn cells in the spinal cord was manifested by muscle atrophy and pathological changes consistent with nerve fiber denervation and reinnervation. Expression of HERV-K was regulated by TAR (trans-activation responsive) DNA binding protein 43, which binds to the long terminal repeat region of the virus. Thus, HERV-K expression within neurons of patients with ALS may contribute to neurodegeneration and disease pathogenesis.

359 citations


Journal ArticleDOI
TL;DR: There is an inverse correlation between SMN2 gene copy number and clinical severity, and clinical management focuses on multidisciplinary care.

327 citations


Journal ArticleDOI
TL;DR: The dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo.

301 citations


Journal ArticleDOI
TL;DR: By using a combination of small molecules that regulate multiple signaling pathways, a method is developed to guide human embryonic stem cells to a near-pure population of motor neuron progenitors (MNPs) in 12 days, and an enriched population of functionally mature MNs in an additional 16 days.
Abstract: Applications of human pluripotent stem cells (hPSCs) for disease modelling or cell therapy are hindered by low efficiency and heterogeneity of target cell types differentiated from hPSCs, such as motor neurons (MNs). Here the authors develop a method to derive highly pure motor neuron progenitor populations from human embryonic and induced pluripotent stem cells that yield functional MNs.

298 citations


Journal ArticleDOI
TL;DR: Evidence is provided that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia, suggesting that the mechanisms involved in neuromUScular junction maintenance might be disturbed during aging.
Abstract: The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.

274 citations


Journal ArticleDOI
TL;DR: A review of ALS rodent models, including discussion of their relative advantages and disadvantages, is provided in this article, with particular emphasis on the newest ALS rodent model, and the utility of the model for defining the disease process.
Abstract: Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease affecting upper and lower motor neurons in the central nervous system. Patients with ALS develop extensive muscle wasting and atrophy leading to paralysis and death 3 to 5 years after disease onset. The condition may be familial (fALS 10%) or sporadic ALS (sALS, 90%). The large majority of fALS cases are due to genetic mutations in the Superoxide dismutase 1 gene (SOD1, 15% of fALS) and repeat nucleotide expansions in the gene encoding C9ORF72 (∼ 40% to 50% of fALS and ∼ 10% of sALS). Studies suggest that ALS is mediated through aberrant protein homeostasis (i.e., ER stress and autophagy) and/or changes in RNA processing (as in all non-SOD1-mediated ALS). In all of these cases, animal models suggest that the disorder is mediated non-cell autonomously, i.e., not only motor neurons are involved, but glial cells including microglia, astrocytes, and oligodendrocytes, and other neuronal subpopulations are also implicated in the pathogenesis. Provided in this unit is a review of ALS rodent models, including discussion of their relative advantages and disadvantages. Emphasis is placed on correlating the model phenotype with the human condition and the utility of the model for defining the disease process. Information is also presented on RNA processing studies in ALS research, with particular emphasis on the newest ALS rodent models.

251 citations


Journal ArticleDOI
TL;DR: The effect of C9orf72 loss‐of‐function in mice is determined and it is shown that repeated expansions in C9ORF72 cause amyotrophic lateral sclerosis in mice.
Abstract: OBJECTIVE: How hexanucleotide (GGGGCC) repeat expansions in C9ORF72 cause amyotrophic lateral sclerosis (ALS) remains poorly understood. Both gain- and loss-of-function mechanisms have been proposed. Evidence supporting these mechanisms in vivo is, however, incomplete. Here we determined the effect of C9orf72 loss-of-function in mice. METHODS: We generated and analyzed a conditional C9orf72 knockout mouse model. C9orf72(fl/fl) mice were crossed with Nestin-Cre mice to selectively remove C9orf72 from neurons and glial cells. Immunohistochemistry was performed to study motor neurons and neuromuscular integrity, as well as several pathological hallmarks of ALS, such as gliosis and TDP-43 mislocalization. In addition, motor function and survival were assessed. RESULTS: Neural-specific ablation of C9orf72 in conditional C9orf72 knockout mice resulted in significantly reduced body weight but did not induce motor neuron degeneration, defects in motor function, or altered survival. INTERPRETATION: Our data suggest that C9orf72 loss-of-function, by itself, is insufficient to cause motor neuron disease. These results may have important implications for the development of therapeutic strategies for C9orf72-associated ALS.

244 citations


Journal ArticleDOI
TL;DR: A detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates is presented, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.

233 citations


Journal ArticleDOI
TL;DR: An update is provided regarding the most common form of SMA, proximal or 5q‐SMA, and the contemporary approach to diagnosis and treatment and several promising therapeutics are now being tested in early‐phase clinical trials.
Abstract: Spinal muscular atrophy (SMA) describes a group of disorders associated with spinal motor neuron loss. In this review we provide an update regarding the most common form of SMA, proximal or 5q-SMA, and discuss the contemporary approach to diagnosis and treatment. Electromyography and muscle biopsy features of denervation were once the basis for diagnosis, but molecular testing for homozygous deletion or mutation of the SMN1 gene allows efficient and specific diagnosis. In combination with loss of SMN1, patients retain variable numbers of copies of a second similar gene, SMN2, which produces reduced levels of the survival motor neuron (SMN) protein that are insufficient for normal motor neuron function. Despite the fact that understanding of how ubiquitous reduction of SMN protein leads to motor neuron loss remains incomplete, several promising therapeutics are now being tested in early-phase clinical trials.

231 citations


Journal ArticleDOI
TL;DR: This review will focus on the cellular players involved in neuroinflammation in ALS and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity with the goal of arresting the progressive and devastating nature of ALS.

215 citations


Journal ArticleDOI
TL;DR: The rNLS mice are new TDP-43 mouse models that delineate the timeline of pathology development, muscle denervation and neuron loss in ALS/FTLD-TDP and show a significant increase in muscle innervation, a rescue of motor impairments, and a dramatic extension of lifespan.
Abstract: Accumulation of phosphorylated cytoplasmic TDP-43 inclusions accompanied by loss of normal nuclear TDP-43 in neurons and glia of the brain and spinal cord are the molecular hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the role of cytoplasmic TDP-43 in the pathogenesis of these neurodegenerative TDP-43 proteinopathies remains unclear, due in part to a lack of valid mouse models. We therefore generated new mice with doxycycline (Dox)-suppressible expression of human TDP-43 (hTDP-43) harboring a defective nuclear localization signal (∆NLS) under the control of the neurofilament heavy chain promoter. Expression of hTDP-43∆NLS in these ‘regulatable NLS’ (rNLS) mice resulted in the accumulation of insoluble, phosphorylated cytoplasmic TDP-43 in brain and spinal cord, loss of endogenous nuclear mouse TDP-43 (mTDP-43), brain atrophy, muscle denervation, dramatic motor neuron loss, and progressive motor impairments leading to death. Notably, suppression of hTDP-43∆NLS expression by return of Dox to rNLS mice after disease onset caused a dramatic decrease in phosphorylated TDP-43 pathology, an increase in nuclear mTDP-43 to control levels, and the prevention of further motor neuron loss. rNLS mice back on Dox also showed a significant increase in muscle innervation, a rescue of motor impairments, and a dramatic extension of lifespan. Thus, the rNLS mice are new TDP-43 mouse models that delineate the timeline of pathology development, muscle denervation and neuron loss in ALS/FTLD-TDP. Importantly, even after neurodegeneration and onset of motor dysfunction, removal of cytoplasmic TDP-43 and the concomitant return of nuclear TDP-43 led to neuron preservation, muscle re-innervation and functional recovery.

Journal ArticleDOI
TL;DR: This study provides the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology by investigating muscle physiology and motor behavior with respect to muscle metabolic capacity in a mouse model of the disease.
Abstract: Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease in adults Numerous studies indicate that ALS is a systemic disease that affects whole body physiology and metabolic homeostasis Using a mouse model of the disease (SOD1 G86R ), we investigated muscle physiology and motor behavior with respect to muscle metabolic capacity We found that at 65 days of age, an age described as asymptomatic, SOD1 G86R mice presented with improved endurance capacity associated with an early inhibition in the capacity for glycolytic muscle to use glucose as a source of energy and a switch in fuel preference toward lipids Indeed, in glycolytic muscles we showed progressive induction of pyruvate dehydrogenase kinase 4 expression Phosphofructokinase 1 was inhibited, and the expression of lipid handling molecules was increased This mechanism represents a chronic pathologic alteration in muscle metabolism that is exacerbated with disease progression Further, inhibition of pyruvate dehydrogenase kinase 4 activity with dichloroacetate delayed symptom onset while improving mitochondrial dysfunction and ameliorating muscle denervation In this study, we provide the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology

Journal ArticleDOI
01 Apr 2015-Brain
TL;DR: The cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function are uncovered and provide therapeutically relevant insight into motor neuronal diseases.
Abstract: Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.

Journal ArticleDOI
TL;DR: The knowledge of developmental classes of neurons and their lineage relationships is summarized, with an eye toward understanding the functional roles of each group.
Abstract: The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group.

Journal ArticleDOI
01 Mar 2015-Brain
TL;DR: The data imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input.
Abstract: Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. * Abbreviations : NMF : non-negative matrix factorization SCS : spinal cord stimulation

Journal ArticleDOI
TL;DR: SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types, and offers unprecedented promise for the treatment of this still incurable neurodegenerative disease.
Abstract: Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2 Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease

Journal ArticleDOI
TL;DR: The findings in the present study suggest that cortical hyperexcitability occurs upstream to a seemingly intact lower motor neuronal system in sporadic amyotrophic lateral sclerosis, suggesting a cortical origin of the disease.

Journal ArticleDOI
TL;DR: The data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons, indicating that SMA is not a cell-autonomous defect of motor neurons in S MA mice.
Abstract: Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.

Journal ArticleDOI
18 Nov 2015-Neuron
TL;DR: It is shown that hypoxia-inducible factor 1α (HIF-1α) controls multiple injury-induced genes in sensory neurons and contribute to the preconditioning lesion effect.

Journal ArticleDOI
TL;DR: The results showed that the majority of neural drive to the vasti muscles was a cross-muscle drive characterized by a force-dependent strength and bandwidth, which supports the notion that synergistically activated muscles share most of their neural drive.
Abstract: Neural control of synergist muscles is not well understood. Presumably, each muscle in a synergistic group receives some unique neural drive and some drive that is also shared in common with other muscles in the group. In this investigation, we sought to characterize the strength, frequency spectrum, and force dependence of the neural drive to the human vastus lateralis and vastus medialis muscles during the production of isometric knee extension forces at 10 and 30% of maximum voluntary effort. High-density surface electromyography recordings were decomposed into motor unit action potentials to examine the neural drive to each muscle. Motor unit coherence analysis was used to characterize the total neural drive to each muscle and the drive shared between muscles. Using a novel approach based on partial coherence analysis, we were also able to study specifically the neural drive unique to each muscle (not shared). The results showed that the majority of neural drive to the vasti muscles was a cross-muscle drive characterized by a force-dependent strength and bandwidth. Muscle-specific neural drive was at low frequencies ( SIGNIFICANCE STATEMENT Precisely how the nervous system coordinates the activity of synergist muscles is not well understood. One possibility is that muscles of a synergy share a common neural drive. In this study, we directly compared the relative strength of shared versus independent neural drive to synergistically activated thigh muscles in humans. The results of this analysis support the notion that synergistically activated muscles share most of their neural drive. Scientifically, this study addressed an important gap in our current understanding of how neural drive is delivered to synergist muscles. We have also demonstrated the feasibility of a novel approach to the study of muscle synergies based on partial coherence analysis of motor unit activity.

Journal ArticleDOI
TL;DR: It is demonstrated that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.
Abstract: The CB1 cannabinoid receptor, the main target of Δ9-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

Journal ArticleDOI
TL;DR: MUNIX is a reliable electrophysiological biomarker to track lower motor neuron loss in ALS and is evaluated as a marker of disease progression in patients with amyotrophic lateral sclerosis.
Abstract: Background Motor Unit Number Index (MUNIX) is a novel neurophysiological measure that provides an index of the number of functional lower motor neurons in a given muscle. So far its performance across centres in patients with amyotrophic lateral sclerosis (ALS) has not been investigated. Objective To perform longitudinal MUNIX recordings in a set of muscles in a multicentre setting in order to evaluate its value as a marker of disease progression. Methods Three centres applied MUNIX in 51 ALS patients over 15 months. Six different muscles (abductor pollicis brevis, abductor digiti minimi, biceps brachii, tibialis anterior, extensor dig. brevis, abductor hallucis) were measured every 3 months on the less affected side. The decline between MUNIX and ALSFRS-R was compared. Results 31 participants reached month 12. For all participants, ALSFRS-R declined at a rate of 2.3%/month. Using the total score of all muscles, MUNIX declined significantly faster by 3.2%/month (p≤0.02). MUNIX in individual muscles declined between 2.4% and 4.2%, which differed from ASLFRS-R decline starting from month 3 (p≤0.05 to 0.002). Subgroups with bulbar, lower and upper limb onset showed different decline rates of ALSFRS-R between 1.9% and 2.8%/month, while MUNIX total scores showed similar decline rates over all subgroups. Mean intraclass correlation coefficient for MUNIX intra-rater reliability was 0.89 and for inter-rater reliability 0.80. Conclusion MUNIX is a reliable electrophysiological biomarker to track lower motor neuron loss in ALS.

Journal ArticleDOI
TL;DR: Cortical thickness of the precentral gyrus (PCG) was found to be specific for motor neuron disease with clinical UMN involvement and Progressive cortical thinning in the temporal lobe suggests recruitment of non-motor areas, over time.
Abstract: Objective Examine whether cortical thinning is a disease-specific phenomenon across the spectrum of motor neuron diseases in relation to upper motor neuron (UMN) involvement. Methods 153 patients (112 amyotrophic lateral sclerosis (ALS), 19 patients with a clinical UMN phenotype, 22 with a lower motor neuron (LMN) phenotype), 60 healthy controls and 43 patients with an ALS mimic disorder were included for a cross-sectional cortical thickness analysis. Thirty-nine patients with ALS underwent a follow-up scan. T1-weighted images of the brain were acquired using a 3 T scanner. The relation between cortical thickness and clinical measures, and the longitudinal changes were examined. Results Cortical thickness of the precentral gyrus (PCG) was significantly reduced in ALS (p=1.71×10 −13 ) but not in mimic disorders (p=0.37) or patients with an LMN phenotype (p=0.37), as compared to the group of healthy controls. Compared to patients with ALS, patients with a UMN phenotype showed an even lower PCG cortical thickness (p=1.97×10 −3 ). Bulbar scores and arm functional scores showed a significant association with cortical thickness of corresponding body regions of the motor homunculus. Longitudinal analysis revealed a decrease of cortical thickness in the left temporal lobe of patients with ALS (parahippocampal region p=0.007 and fusiform cortex p=0.001). Conclusions PCG cortical thinning was found to be specific for motor neuron disease with clinical UMN involvement. Normal levels of cortical thickness in mimic disorders or LMN phenotypes suggest that cortical thinning reflects pathological changes related to UMN involvement. Progressive cortical thinning in the temporal lobe suggests recruitment of non-motor areas, over time.

Journal ArticleDOI
TL;DR: TDP-43 cytoplasmic aggregation is the dominant feature of ALS spinal cord pathology irrespective of C9ORF72 mutation status, and the near absence of DPR inclusions in spinal cord motor neurons challenges their contribution to lower motor neuron degeneration in ALS-C9+ve cases.
Abstract: Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected population of neurons. TDP-43 cytoplasmic aggregation is the dominant feature of ALS spinal cord pathology irrespective of C9ORF72 mutation status. The near absence of DPR inclusions in spinal cord motor neurons challenges their contribution to lower motor neuron degeneration in ALS-C9+ve cases.

Journal ArticleDOI
TL;DR: It is suggested that glutamate excitotoxicity causes mitochondrial dysfunction by impairing mitochondrial dynamics via calpain-mediated MFN2 degradation in motor neurons and thus present a molecular mechanism coupling glutamate excittotoxicity and mitochondrial dysfunction.

Journal ArticleDOI
01 Jan 2015-Brain
TL;DR: It is shown that system participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotroph lateral sclerosis disease progression after onset of clinical symptoms.
Abstract: Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms.

Journal ArticleDOI
TL;DR: It is shown that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic signatures, and cochaperone SIL1, mutated in Marinesco-Sjögren syndrome, is identified as being robustly expressed in disease-resistant slow motor neurons but not in ER stress–prone fast-fatigable motor neurons.
Abstract: Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic signatures. We identify cochaperone SIL1, mutated in Marinesco-Sjogren syndrome (MSS), as being robustly expressed in disease-resistant slow motor neurons but not in ER stress-prone fast-fatigable motor neurons. In a mouse model of MSS, we demonstrate impaired ER homeostasis in motor neurons in response to loss of SIL1 function. Loss of a single functional Sil1 allele in an ALS mouse model (SOD1-G93A) enhanced ER stress and exacerbated ALS pathology. In SOD1-G93A mice, SIL1 levels were progressively and selectively reduced in vulnerable fast-fatigable motor neurons. Mechanistically, reduction in SIL1 levels was associated with lowered excitability of fast-fatigable motor neurons, further influencing expression of specific ER chaperones. Adeno-associated virus-mediated delivery of SIL1 to familial ALS motor neurons restored ER homeostasis, delayed muscle denervation and prolonged survival.

Journal Article
TL;DR: Many ongoing clinical trials for ALS targeting neuroinflammation, together with a further understanding of the role of neuro inflammation in disease, will lead to the development of novel therapeutics for ALS.
Abstract: Increasing evidence suggests that the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) is not restricted to the neurons but attributed to the abnormal interactions of neurons and surrounding glial and lymphoid cells. These findings led to the concept of non-cell autonomous neurodegeneration. Neuroinflammation, which is mediated by activated glial cells and infiltrated lymphocytes and accompanied by the subsequent production of proinflammatory cytokines and neurotoxic or neuroprotective molecules, is characteristic to the pathology in ALS and is a key component for non-cell autonomous neurodegeneration. This review covers the involvement of microglia and astrocytes in the ALS mouse models and human ALS, and it also covers the deregulated pathways in motor neurons, which are involved in initiating the disease. Based on the cell-type specific pathomechanisms of motor neuron disease, targeting of neuroinflammation could lead to future therapeutic strategies for ALS and could be potentially applied to other neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is proposed that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis.
Abstract: During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2(+) cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis.

Journal ArticleDOI
TL;DR: The pattern of weakness on examination helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle and clinical features of sporadic ALS are described.