scispace - formally typeset
Search or ask a question

Showing papers on "Neurosphere published in 2006"


Journal ArticleDOI
TL;DR: In this article, the authors discuss the alternative bystander mechanism in the context of the atypical ectopic perivascular niche and propose that it is the most challenging example of reciprocal therapeutic crosstalk between the inflamed CNS and systemically transplanted neural stem cells.
Abstract: Transplantation of neural stem cells holds great promise for treating neurological disorders. Martino and Pluchino argue that neural stem cells achieve their therapeutic efficacy exculsively by a cell-replacement mechanism, rather than by the recently proposed alternative mechanism of bystander neuroprotection. Recent evidence shows that transplantation of neural stem/precursor cells may protect the central nervous system from inflammatory damage through a 'bystander' mechanism that is alternative to cell replacement. This novel mechanism, which might improve the success of transplantation procedures, is exerted by undifferentiated neural stem cells, the functional characteristics of which are regulated by important stem cell regulators released by CNS-resident and blood-borne inflammatory cells. Here, we discuss this alternative bystander mechanism in the context of the atypical ectopic perivascular niche. We propose that it is the most challenging example of reciprocal therapeutic crosstalk between the inflamed CNS and systemically transplanted neural stem cells.

721 citations


Journal ArticleDOI
TL;DR: It is shown that endogenous neural stem cells continuously supply the injured adult brain with new neurons, which suggests novel self‐repair strategies to improve recovery after stroke.
Abstract: Neural stem cells in the subventricular zone of adult rodents produce new striatal neurons that may replace those that have died after stroke; however, the neurogenic response has been considered acute and transient, yielding only small numbers of neurons. In contrast, we show herein that striatal neuroblasts are generated without decline at least for 4 months after stroke in adult rats. Neuroblasts formed early or late after stroke either differentiate into mature neurons, which survive for several months, or die through caspase-mediated apoptosis. The directed migration of the new neurons toward the ischemic damage is regulated by stromal cell-derived factor-1alpha and its receptor CXCR4. These results show that endogenous neural stem cells continuously supply the injured adult brain with new neurons, which suggests novel self-repair strategies to improve recovery after stroke.

716 citations


Journal ArticleDOI
TL;DR: It is shown in mice that the essential timing mechanism is programmed within individual progenitor cells, and its expression depends solely on cell-intrinsic and environmental factors generated within the clonal lineage.
Abstract: In the developing cerebral cortex, neurons are born on a predictable schedule. Here we show in mice that the essential timing mechanism is programmed within individual progenitor cells, and its expression depends solely on cell-intrinsic and environmental factors generated within the clonal lineage. Multipotent progenitor cells undergo repeated asymmetric divisions, sequentially generating neurons in their normal in vivo order: first preplate cells, including Cajal-Retzius neurons, then deep and finally superficial cortical plate neurons. As each cortical layer arises, stem cells and neuroblasts become restricted from generating earlier-born neuron types. Growth as neurospheres or in co-culture with younger cells did not restore their plasticity. Using short-hairpin RNA (shRNA) to reduce Foxg1 expression reset the timing of mid- but not late-gestation progenitors, allowing them to remake preplate neurons and then cortical-plate neurons. Our data demonstrate that neural stem cells change neuropotency during development and have a window of plasticity when restrictions can be reversed.

612 citations


Journal ArticleDOI
TL;DR: It is demonstrated that docosahexaenoic acid effectively promotes neurogenesis both in vitro and in vivo, suggesting that it has the new property of modulating hippocampal function regulated by neuro genesis.

405 citations


Journal ArticleDOI
TL;DR: It is observed that neurospheres are highly motile structures prone to fuse even under ostensibly 'clonal' culture conditions, which has implications for the use of 'cytospheres' as an assay in other organ systems and with other cell types, both normal and neoplastic.
Abstract: For more than a decade the 'neurosphere assay' has been used to define and measure neural stem cell (NSC) behavior, with similar assays now used in other organ systems and in cancer. We asked whether neurospheres are clonal structures whose diameter, number and composition accurately reflect the proliferation, self-renewal and multipotency of a single founding NSC. Using time-lapse video microscopy, coculture experiments with genetically labeled cells, and analysis of the volume of spheres, we observed that neurospheres are highly motile structures prone to fuse even under ostensibly 'clonal' culture conditions. Chimeric neurospheres were prevalent independent of ages, species and neural structures. Thus, the intrinsic dynamic of neurospheres, as conventionally assayed, introduces confounders. More accurate conditions (for example, plating a single cell per miniwell) will be crucial for assessing clonality, number and fate of stem cells. These cautions probably have implications for the use of 'cytospheres' as an assay in other organ systems and with other cell types, both normal and neoplastic.

378 citations


Journal ArticleDOI
TL;DR: The data suggest that human embryonic stem cell medium can be used to isolate and expand human adult stem cells, and these cells appear to be located in the bulge area of human hair follicles.
Abstract: Hair follicles are known to contain a well-characterized niche for adult stem cells: the bulge, which contains epithelial and melanocytic stem cells. Using human embryonic stem cell culture conditions, we isolated a population of adult stem cells from human hair follicles that are distinctively different from known epithelial or melanocytic stem cells. These cells do not express squamous or melanocytic markers but express neural crest and neuron stem cell markers as well as the embryonic stem cell transcription factors Nanog and Oct4. These precursor cells proliferate as spheres, are capable of self-renewal, and can differentiate into multiple lineages. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. Most of the Oct4-positive cells in human skin were located in the area highlighted by cytokeratin 15 staining in vivo. Our data suggest that human embryonic stem cell medium can be used to isolate and expand human adult stem cells. Using this method, we isolated a novel population of multipotent adult stem cells from human hair follicles, and these cells appear to be located in the bulge area. Human hair follicles may provide an accessible, autologous source of adult stem cells for therapeutic application.

372 citations


Journal ArticleDOI
TL;DR: It is proposed that VEGF acts as a trophic factor for neural stem cells in vitro and for sustained neurogenesis in the adult nervous system and these findings may have implications for the pathogenesis and therapy of neurodegenerative diseases.
Abstract: Hypoxia as well as global and focal ischemia are strong activators of neurogenesis in the adult mammalian central nervous system. Here we show that the hypoxia-inducible vascular endothelial growth factor (VEGF) and its receptor VEGFR-2/Flk-1 are expressed in clonally-derived adult rat neural stem cells in vitro. VEGF stimulated the expansion of neural stem cells whereas blockade of VEGFR-2/Flk-1-kinase activity reduced neural stem cell expansion. VEGF was also infused into the lateral ventricle to study changes in neurogenesis in the ventricle wall, olfactory bulb and hippocampus. Using a low dose (2.4 ng/d) to avoid endothelial proliferation and changes in vascular permeability, VEGF stimulated adult neurogenesis in vivo. After VEGF infusion, we observed reduced apoptosis but unaltered proliferation suggesting a survival promoting effect of VEGF in neural progenitor cells. Strong expression of VEGFR-2/Flk-1 was detected in the ventricle wall adjacent to the choroid plexus, a site of significant VEGF production, which suggests a paracrine function of endogenous VEGF on neural stem cells in vivo. We propose that VEGF acts as a trophic factor for neural stem cells in vitro and for sustained neurogenesis in the adult nervous system. These findings may have implications for the pathogenesis and therapy of neurodegenerative diseases.

370 citations


Journal ArticleDOI
01 Dec 2006-Glia
TL;DR: An adherent culture system that models the continuing proliferation and differentiation of the dissociated neuropoietic subventricular tissues suggests an instructive role for microglial cells in contributing to postnatal neurogenesis in the largest neurogenic niche of the mammalian brain.
Abstract: Microglia are increasingly implicated as a source of non-neural regulation of postnatal neurogenesis and neuronal development. To evaluate better the contributions of microglia to neural stem cells (NSCs) of the subventricular neuraxis, we employed an adherent culture system that models the continuing proliferation and differentiation of the dissociated neuropoietic subventricular tissues. In this model, neuropoietic cells retain the ability to self-renew and form multipotent neurospheres, but progressively lose the ability to generate committed neuroblasts with continued culture. Neurogenesis in highly expanded NSCs can be rescued by coculture with microglial cells or microglia-conditioned medium, indicating that microglia provide secreted factor(s) essential for neurogenesis, but not NSC maintenance, self-renewal, or propagation. Our findings suggest an instructive role for microglial cells in contributing to postnatal neurogenesis in the largest neurogenic niche of the mammalian brain.

365 citations


Journal ArticleDOI
TL;DR: Advances challenge the traditional perceptions of glia and stem cells, and provide the foundation for understanding the molecular basis of mammalian NSC behavior.

331 citations


Journal ArticleDOI
TL;DR: Results indicate that MSCs may be “primed” toward a neural fate by the constitutive expression of neuronal antigens and that they seem to respond with an appropriate neural pattern of differentiation when exposed to the environment of the developing brain.
Abstract: Reports of neural transdifferentiation of mesenchymal stem cells (MSCs) suggest the possibility that these cells may serve as a source for stem cell-based regenerative medicine to treat neurological disorders. However, some recent studies controvert previous reports of MSC neurogenecity. In the current study, we evaluate the neural differentiation potential of mouse bone marrow-derived MSCs. Surprisingly, we found that MSCs spontaneously express certain neuronal phenotype markers in culture, in the absence of specialized induction reagents. A previously published neural induction protocol that elevates cytoplasmic cyclic AMP does not upregulate neuron-specific protein expression significantly in MSCs but does significantly increase expression of the astrocyte-specific glial fibrillary acidic protein. Finally, when grafted into the lateral ventricles of neonatal mouse brain, MSCs migrate extensively and differentiate into olfactory bulb granule cells and periventricular astrocytes, without evidence of cell fusion. These results indicate that MSCs may be "primed" toward a neural fate by the constitutive expression of neuronal antigens and that they seem to respond with an appropriate neural pattern of differentiation when exposed to the environment of the developing brain.

321 citations


Journal ArticleDOI
TL;DR: The isolation of multipotent stem cell–like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures are described.
Abstract: Given their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures. To determine the origin of these cells, we genetically mapped the fate of neural crest cells in face and trunk skin of mouse. In whisker follicles of the face, many mesenchymal structures are neural crest derived and appear to contain cells with sphere-forming potential. In the trunk skin, however, sphere-forming neural crest-derived cells are restricted to the glial and melanocyte lineages. Thus, self-renewing cells in the adult skin can be obtained from several neural crest derivatives, and these are of distinct nature in face and trunk skin. These findings are relevant for the design of therapeutic strategies because the potential of stem and progenitor cells in vivo likely depends on their nature and origin.

Journal ArticleDOI
TL;DR: It is proposed that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that L rig1 down-regulation triggers proliferation.
Abstract: Considerable progress has been made in characterizing epidermal stem cells by microarray analysis of FACS-selected populations. One limitation of this approach is that the gene expression profiles represent the average of the cell population, potentially masking cellular heterogeneity of functional significance. To overcome this problem, we have performed single-cell expression profiling. We have generated cDNA libraries from single human epidermal cells, designated as stem or transit-amplifying cells on the basis of Delta1 and melanoma-associated chondroitin sulfate proteoglycan expression. Of the 14 putative stem cell markers identified, we selected one, the EGF receptor antagonist leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), for further study. Lrig1 was expressed in groups of basal cells in human interfollicular epidermis previously identified as enriched for stem cells. Overexpression of Lrig1 decreased keratinocyte proliferation but did not affect the proportion of stem and transit-amplifying cells, as judged by clonal growth characteristics. Down-regulation of Lrig1 using siRNA increased cell-surface EGF receptor levels, enhanced activation of downstream pathways, and stimulated proliferation. Lrig1 acted in part by negatively regulating the Myc promoter. We propose that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that Lrig1 down-regulation triggers proliferation.

Journal ArticleDOI
TL;DR: Data show that activated endothelial cells can promote neural progenitor cell migration by secreting MMP2 and MMP9 via the PI3K/Akt and ERK1/2 signaling pathways, and provide insight into the molecular mechanisms underlying the attraction of newly generated neurons to injured areas in brain.
Abstract: We investigated the hypothesis that endothelial cells activated by erythropoietin (EPO) promote the migration of neuroblasts. This hypothesis is based on observations in vivo that treatment of focal cerebral ischemia with EPO enhances the migration of neuroblasts to the ischemic boundary, a site containing activated endothelial cells and angiogenic microvasculature. To model the microenvironment within the ischemic boundary zone, we used a coculture system of mouse brain endothelial cells (MBECs) and neural progenitor cells derived from the subventricular zone of the adult mouse. Treatment of MBECs with recombinant human EPO (rhEPO) significantly increased secretion of matrix metalloproteinase 2 (MMP2) and MMP9. rhEPO-treated MBEC supernatant as conditioned medium significantly increased the migration of neural progenitor cells. Application of an MMP inhibitor abolished the supernatant-enhanced migration. Incubation of neurospheres alone with rhEPO failed to increase progenitor cell migration. rhEPO activated phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase (ERK1/2) in MBECs. Selective inhibition of the PI3K/Akt and ERK1/2 pathways significantly attenuated the rhEPO-induced MMP2 and MMP9, which suppressed neural progenitor cell migration promoted by the rhEPO-activated MBECs. Collectively, our data show that rhEPO-activated endothelial cells enhance neural progenitor cell migration by secreting MMP2 and MMP9 via the PI3K/Akt and ERK1/2 signaling pathways. These data demonstrate that activated endothelial cells can promote neural progenitor cell migration, and provide insight into the molecular mechanisms underlying the attraction of newly generated neurons to injured areas in brain.

Journal ArticleDOI
TL;DR: An unexpected and decisive role for Notch in ES cell fate determination is defined, which is likely to be a key factor in taking command of ES cell lineage choice.
Abstract: A central challenge in embryonic stem (ES) cell biology is to understand how to impose direction on primary lineage commitment In basal culture conditions, the majority of ES cells convert asynchronously into neural cells However, many cells resist differentiation and others adopt nonneural fates Mosaic activation of the neural reporter Sox-green fluorescent protein suggests regulation by cell-cell interactions We detected expression of Notch receptors and ligands in mouse ES cells and investigated the role of this pathway Genetic manipulation to activate Notch constitutively does not alter the stem cell phenotype However, upon withdrawal of self-renewal stimuli, differentiation is directed rapidly and exclusively into the neural lineage Conversely, pharmacological or genetic interference with Notch signalling suppresses the neural fate choice Notch promotion of neural commitment requires parallel signalling through the fibroblast growth factor receptor Stromal cells expressing Notch ligand stimulate neural specification of human ES cells, indicating that this is a conserved pathway in pluripotent stem cells These findings define an unexpected and decisive role for Notch in ES cell fate determination Limiting activation of endogenous Notch results in heterogeneous lineage commitment Manipulation of Notch signalling is therefore likely to be a key factor in taking command of ES cell lineage choice

Journal ArticleDOI
TL;DR: The ALDH expression assay is an effective method for direct identification of NSCs, and improvement of the stem cell isolation protocol may be useful in the development of a cell‐mediated therapeutic strategy for neurodegenerative diseases.
Abstract: Stem cells are undifferentiated cells defined by their ability to self-renew and differentiate to progenitors and terminally differentiated cells. Stem cells have been isolated from almost all tissues, and an emerging idea is that they share common characteristics such as the presence of ATP-binding cassette transporter G2 and high telomerase and aldehyde dehydrogenase (ALDH) activity, raising the hypothesis of a set of universal stem cell markers. In the present study, we describe the isolation of primitive neural stem cells (NSCs) from adult and embryonic murine neurospheres and dissociated tissue, based on the expression of high levels of ALDH activity. Single-cell suspension was stained with a fluorescent ALDH substrate termed Aldefluor and then analyzed by flow cytometry. A population of cells with low side scatter (SSClo) and bright ALDH (ALDHbr) activity was isolated. SSCloALDHbr cells are capable of self-renewal and are able to generate new neurospheres and neuroepithelial stem-like cells. Furthermore, these cells are multipotent, differentiating both in neurons and macroglia, as determined by immunocytochemistry and real-time reverse transcription–polymerase chain reaction analysis. To evaluate the engraftment potential of SSCloALDHbr cells in vivo, we transplanted them into mouse brain. Donor-derived neurons with mature morphology were detected in the cortex and subcortical areas, demonstrating the capacity of this cell population to differentiate appropriately in vivo. The ALDH expression assay is an effective method for direct identification of NSCs, and improvement of the stem cell isolation protocol may be useful in the development of a cell-mediated therapeutic strategy for neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is demonstrated that similar NS cell cultures can be established from the adult mouse brain and the growth factor requirements for NS cell derivation and self-renewal are characterized.
Abstract: Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

Journal ArticleDOI
TL;DR: It is suggested that DC targeting of CSC provides a higher level of protection against GL261 gliomas, a finding with potential implications for the design of clinical trials based on DC vaccination.
Abstract: Cancer stem–like cells (CSC) could be a novel target for cancer therapy, including dendritic cell (DC) immunotherapy. To address this, we developed experiments aimed at DC targeting of neurospheres (NS) from GL261 glioma cells because neurospheres can be enriched in CSC. We obtained murine neurospheres by growing GL261 cells in epidermal growth factor/basic fibroblast growth factor without serum. GL261NS recapitulated important features of glioblastoma CSC and expressed higher levels of radial glia stem cell markers than GL261 cells growing under standard conditions (GL261 adherent cells, GL261-AC), as assessed by DNA microarray and real-time PCR. GL261-NS brain gliomas were highly infiltrating and more rapidly lethal than GL261-AC, as evidenced by survival analysis (P < 0.0001), magnetic resonance imaging and histology. DC from the bone marrow of syngeneic mice were then used for immunotherapy of GL261-NS and GL261-AC tumors. Strikingly, DC loaded with GL261-NS (DC-NS) cured 80% and 60% of GL261-AC and GL261-NS tumors, respectively (P < 0.0001), whereas DC-AC cured only 50% of GL261-AC tumors (P = 0.0022) and none of the GL261-NS tumors. GL261-NS expressed higher levels of MHC and costimulatory molecules (CD80 and CD86) than GL261-AC; the JAM assay indicated that DC-NS splenocytes had higher lytic activity than DC-AC splenocytes on both GL261-NS and GL261-AC, and immunohistochemistry showed that DC-NS vaccination was associated with robust tumor infiltration by CD8+ and CD4+ T lymphocytes. These findings suggest that DC targeting of CSC provides a higher level of protection against GL261 gliomas, a finding with potential implications for the design of clinical trials based on DC vaccination. (Cancer Res 2006; 66(21): 10247-52)

Journal ArticleDOI
TL;DR: The results of this study suggest that besides being an easily accessible and expandable source of fetal stem cells, amniotic fluid will provide a promising source of neural progenitor cells that may be used in future cellular therapies for neurodegenerative diseases and nervous system injuries.
Abstract: Recent evidence has shown that amniotic fluid may be a novel source of fetal stem cells for therapeutic transplantation. We previously developed a two-stage culture protocol to isolate a population of amniotic fluid-derived mesenchymal stem cells (AFMSCs) from second-trimester amniocentesis. AFMSCs maintain the capacity to differentiate into multiple mesenchymal lineages and neuron-like cells. It is unclear whether amniotic fluid contains heterogeneous populations of stem cells or a subpopulation of primitive stem cells that are similar to marrow stromal cells showing the behavior of neural progenitors. In this study, we showed a subpopulation of amniotic fluid-derived stem cells (AF-SCs) at the single-cell level by limiting dilution. We found that NANOG- and POU5F1 (also known as OCT4)-expressing cells still existed in the expanded single cell-derived AF-SCs. Aside from the common mesenchymal characteristics, these clonal AF-SCs also exhibit multiple phenotypes of neural-derived cells such as NES, TUBB3, NEFH, NEUNA60, GALC, and GFAP expressions both before and after neural induction. Most importantly, HPLC analysis showed the evidence of dopamine release in the extract of dopaminergic-induced clonal AF-SCs. The results of this study suggest that besides being an easily accessible and expandable source of fetal stem cells, amniotic fluid will provide a promising source of neural progenitor cells that may be used in future cellular therapies for neurodegenerative diseases and nervous system injuries.

Journal ArticleDOI
TL;DR: Recent advances in characterizing the properties of neural crest cells are discussed, together with their potential for tissue-specific repair.
Abstract: Neural crest cells are a multipotent, migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These include bones; tendons; neurons; glia; melanocytes; and connective, endocrine, and adipose tissue. With a limited capacity for self-renewal and a wide range of differentiation fates, neural crest cells bear many of the hallmarks of stem cells and persist throughout embryonic and adult development. But are all neural crest cells true stem cells, or do the majority of neural crest cells more closely resemble progenitor cells? In this review we discuss recent advances in characterizing the properties of neural crest cells, together with their potential for tissue-specific repair.

Journal ArticleDOI
TL;DR: The pros and cons of the neurosphere culture system regarding its three major applications: as an assay for neural stem cells, as a model system for neurogenesis and neural development, and for expansion of Neural stem cells for transplantation purposes are discussed.
Abstract: After the initial reports of free-floating cultures of neural stem cells termed neurospheres (1,2), a wide array of studies using this promising culture system emerged. In theory, this was a near-perfect system for large-scale production of neural cells for use in cell replacement therapies and to assay for and characterize neural stem cells. More than a decade later, after rigorous scrutiny and ample experimental testing of the neurosphere culture system, it has become apparent that the culture system suffers from several disadvantages, and its usefulness is limited for several applications. Nevertheless, the bulk of high-quality research produced over the last decade has also shown that under the right circumstances and for the appropriate purposes, neurospheres hold up to their initial promise. This article discusses the pros and cons of the neurosphere culture system regarding its three major applications: as an assay for neural stem cells, as a model system for neurogenesis and neural development, and for expansion of neural stem cells for transplantation purposes.

Journal ArticleDOI
TL;DR: It is shown that the CB2 receptor is expressed, both in vitro and in vivo, in neural progenitors from late embryonic stages to adult brain, and evidence that hippocampal progenitor proliferation is increased by administration of theCB2‐selective agonist HU‐308 is shown.
Abstract: Cannabinoids, the active components of marijuana and their endogenous counterparts, act on the brain and many other organs through the widely expressed CB1 cannabinoid receptor. In contrast, the CB2 cannabinoid receptor is abundant in the immune system and shows a restricted expression pattern in brain cells. CB2-selective agonists are, therefore, very attractive therapeutic agents as they do not cause CB1-mediated psychoactive effects. CB2 receptor expression in brain has been partially examined in differentiated cells, while its presence and function in neural progenitor cells remain unknown. Here we show that the CB2 receptor is expressed, both in vitro and in vivo, in neural progenitors from late embryonic stages to adult brain. Selective pharmacological activation of the CB2 receptor in vitro promotes neural progenitor cell proliferation and neurosphere generation, an action that is impaired in CB2-deficient cells. Accordingly, in vivo experiments evidence that hippocampal progenitor proliferation is...

Book ChapterDOI
TL;DR: How to generate, serially passage, and differentiate neurospheres derived from both the developing and adult brain are described, and more technical details are provided that will enable one to achieve reproducible cultures, which can be passaged over an extended period of time.
Abstract: Throughout the process of development and continuing into adulthood, stem cells function as a reservoir of undifferentiated cell types, whose role is to underpin cell genesis in a variety of tissues and organs. In the adult, they play an essential homeostatic role by replacing differentiated tissue cells "worn off" by physiological turnover or lost to injury or disease. As such, the discovery of such cells in the adult mammalian central nervous system (CNS), an organ traditionally thought to have little or no regenerative capacity, was most unexpected. Nonetheless, by employing a novel serum-free culture system termed the neurosphere assay, Reynolds and Weiss demonstrated the presence of neural stem cells in both the adult (Reynolds and Weiss, 1992) and embryonic mouse brain (Reynolds et al., 1992). Here we describe how to generate, serially passage, and differentiate neurospheres derived from both the developing and adult brain, and provide more technical details that will enable one to achieve reproducible cultures, which can be passaged over an extended period of time.

Journal ArticleDOI
TL;DR: Factors affecting derivation and further proliferation of multipotent neuroepithelial (NEP) cells from hESCs were examined to ensure that NEP cells were continuously propagated for longer than 6 months without losing their multipotent cell characteristics and maintained a stable chromosome number.
Abstract: Research on the cell fate determination of embryonic stem cells is of enormous interest given the therapeutic potential in regenerative cell therapy. Human embryonic stem cells (hESCs) have the ability to renew themselves and differentiate into all three germ layers. The main focus of this study was to examine factors affecting derivation and further proliferation of multipotent neuroepithelial (NEP) cells from hESCs. hESCs cultured in serum-deprived defined medium developed distinct tube structures and could be isolated either by dissociation or adherently. Dissociated cells survived to form colonies of cells characterized as NEP when conditioned medium from human hepatocellular carcinoma HepG2 cell line (MEDII) was added. However, cells isolated adherently developed an enriched population of NEP cells independent of MEDII medium. Further characterization suggested that they were NEP cells because they had a similar phenotype profile to in vivo NEP cells and expression SOX1, SOX2, and SOX3 genes. They were positive for Nestin, a neural intermediate filament protein, and Musashi-1, a neural RNA-binding protein, but few cells expressed further differentiation markers, such as PSNCAM, A2B5, MAPII, GFAP, or O4, or other lineage markers, such as muscle actin, alpha fetoprotein, or the pluripotent marker Oct4. Further differentiation of these putative NEP cells gave rise to a mixed population of progenitors that included A2B5-positive and PSNCAM-positive cells and postmitotic neurons and astrocytes. To proliferate and culture these derived NEP cells, ideal conditions were obtained using neurobasal medium supplemented with B27 and basic fibroblast growth factor in 5% oxygen. NEP cells were continuously propagated for longer than 6 months without losing their multipotent cell characteristics and maintained a stable chromosome number.

Journal ArticleDOI
TL;DR: It is demonstrated that endogenous neural progenitors can be manipulated to replace neurons and oligodendrocytes lost to insults in the injured spinal cord.
Abstract: Neurons and oligodendrocytes are highly vulnerable to various insults, and their spontaneous replacement occurs to only a limited extent after damage in the adult spinal cord. The environment of injured tissue is thus thought to restrict the regenerative capacity of endogenous neural stem/progenitor cells; strategies for overcoming such restrictions remain to be developed. Here, we combined growth factor treatment and genetic manipulation to stimulate neurogenesis and oligodendrogenesis by endogenous progenitors in vivo. The recombinant retrovirus pMXIG, which was designed to coexpress green fluorescent proteins (GFPs) and a neurogenic/gliogenic transcription factor, was directly injected into the injured spinal cord parenchyma to manipulate proliferative cells in situ. We found that cells expressing Olig2, Nkx2.2, and NG2 were enriched among virus-infected, GFP-positive (GFP+) cells. Moreover, a fraction of GFP+ cells formed neurospheres and differentiated into neurons, astrocytes, and oligodendrocytes in vitro, demonstrating that GFP retroviruses indeed infected endogenous neural progenitors in vivo. Neuronal differentiation of control virus-infected cells did not occur at a detectable level in the injured spinal cord. We found, however, that direct administration of fibroblast growth factor 2 and epidermal growth factor into lesioned tissue could induce a significant fraction of GFP-labeled cells to express immature neuronal markers. Moreover, retrovirus-mediated overexpression of the basic helix-loop-helix transcription factors Neurogenin2 and Mash1, together with growth factor treatment, enhanced the production and maturation of new neurons and oligodendrocytes, respectively. These results demonstrate that endogenous neural progenitors can be manipulated to replace neurons and oligodendrocytes lost to insults in the injured spinal cord.

Journal ArticleDOI
TL;DR: The presence of neural crest‐derived corneal precursors (COPs) that initiate spheres by clonal expansion from a single cell and the expression of embryonic neural crest markers Twist, Snail, Slug, and Sox9 are reported to indicate the existence of neural Crest‐derived, multipotent stem cells in the adult cornea.
Abstract: We report the presence of neural crest-derived corneal precursors (COPs) that initiate spheres by clonal expansion from a single cell. COPs expressed the stem cell markers nestin, Notch1, Musashi-1, and ABCG2 and showed the side population cell phenotype. COPs were multipotent with the ability to differentiate into adipocytes, chondrocytes, as well as neural cells, as shown by the expression of β-III-tubulin, glial fibrillary acidic protein, and neurofilament-M. COP spheres prepared from E/nestin-enhanced green fluorescent protein (EGFP) mice showed induction of EGFP expression that was not originally observed in the cornea, indicating activation of the neural-specific nestin second intronic enhancer in culture. COPs were Sca-1+, CD34+, CD45−, and c-kit−. Numerous GFP+ cells were observed in the corneas of mice transplanted with whole bone marrow of transgenic mice ubiquitously expressing GFP; however, no GFP+ COP spheres were initiated from these mice. On the other hand, COP spheres from transgenic mice encoding P0-Cre/Floxed-EGFP as well as Wnt1-Cre/Floxed-EGFP were GFP+, indicating the neural crest origin of COPs, which was confirmed by the expression of the embryonic neural crest markers Twist, Snail, Slug, and Sox9. Taken together, these data indicate the existence of neural crest-derived, multipotent stem cells in the adult cornea.

Journal ArticleDOI
TL;DR: The TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation is described for the first time and IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment is demonstrated.
Abstract: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-κB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-κB super-repressor IκB-AA1. Pharmacological blockade of IκB ubiquitin ligase activity led to comparable decreases in NF-κB activity and proliferation. In addition, IKK-β gene product knock-down via siRNA led to diminished NF-κB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFβ-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. TNF-mediated activation of IKK-β resulted in activation of NF-κB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-κB pathway resulted in strongly increased proliferation of NSCs.

Journal ArticleDOI
TL;DR: Results infer nucleotide receptor-mediated synergism that augments growth factor-mediated cell proliferation that supports the notion that extracellular nucleotides contribute to the control of adult neurogenesis.
Abstract: We have previously shown that the extracellular nucleoside triphosphate-hydrolyzing enzyme NTPDase2 is highly expressed in situ by stem/progenitor cells of the two neurogenic regions of the adult murine brain: the subventricular zone (type B cells) and the dentate gyrus of the hippocampus (residual radial glia). We explored the possibility that adult multipotent neural stem cells express nucleotide receptors and investigated their functional properties in vitro. Neurospheres cultured from the adult mouse SVZ in the presence of epidermal growth factor and fibroblast growth factor 2 expressed the ecto-nucleotidases NTPDase2 and the tissue non-specific isoform of alkaline phosphatase, hydrolyzing extracellular ATP to adenosine. ATP, ADP and, to a lesser extent, UTP evoked rapid Ca(2+) transients in neurospheres that were exclusively mediated by the metabotropic P2Y(1) and P2Y(2) nucleotide receptors. In addition, agonists of these receptors and low concentrations of adenosine augmented cell proliferation in the presence of growth factors. Neurosphere cell proliferation was attenuated after application of the P2Y(1)-receptor antagonist MRS2179 and in neurospheres from P2Y(1)-receptor knockout mice. In situ hybridization identified P2Y(1)-receptor mRNA in clusters of SVZ cells. Our results infer nucleotide receptor-mediated synergism that augments growth factor-mediated cell proliferation. Together with the in situ data, this supports the notion that extracellular nucleotides contribute to the control of adult neurogenesis.

Journal ArticleDOI
TL;DR: It is hypothesized that melanoma develops from a mutated stem cell and therefore residual stem cell characteristics should be able to be identified in melanoma cell lines, and the ability to efflux Hoechst 33342 dye was used to segregate cell populations.

Journal ArticleDOI
TL;DR: Major differences between rat and mouse stem/progenitor cell proliferation in response to various substrates, mitogenic growth factors and heparin and to the influence of differentiation factors on generation of neurons and glia are found.

Journal ArticleDOI
TL;DR: It is suggested that TGF-&bgr;1 is an important signaling molecule involved in the control of neural stem and progenitor cell proliferation in the CNS, which might have potential implications for neurogenesis in a variety of TGF -&b gr;1-associated CNS diseases and pathologic conditions.
Abstract: Transforming growth factor (TGF)-beta1 has multiple functions in the adult central nervous system (CNS). It modulates inflammatory responses in the CNS and controls proliferation of microglia and astrocytes. In the diseased brain, TGF-beta1 expression is upregulated and, depending on the cellular context, its activity can be beneficial or detrimental regarding regeneration. We focus on the role of TGF-beta1 in adult neural stem cell biology and neurogenesis. In adult neural stem and progenitor cell cultures and after intracerebroventricular infusion, TGF-beta1 induced a long-lasting inhibition of neural stem and progenitor cell proliferation and a reduction in neurogenesis. In vitro, although TGF-beta1 specifically arrested neural stem and progenitor cells in the G0/1 phase of the cell cycle, it did not affect the self-renewal capacity and the differentiation fate of these cells. Also, in vivo, TGF-beta1 did not influence the differentiation fate of newly generated cells as shown by bromo-deoxyuridine incorporation experiments. Based on these data, we suggest that TGF-beta1 is an important signaling molecule involved in the control of neural stem and progenitor cell proliferation in the CNS. This might have potential implications for neurogenesis in a variety of TGF-beta1-associated CNS diseases and pathologic conditions.