scispace - formally typeset
Search or ask a question

Showing papers on "Planetary system published in 2012"


Journal ArticleDOI
TL;DR: In this paper, the authors report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars.
Abstract: We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R_⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R_p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R_*/a. We consider first Kepler target stars within the "solar subset" having T_eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude K_p 2 R_⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R_⊕, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T_eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R_⊕ planets in the Kepler field increases with decreasing T_eff, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).

1,159 citations


Journal ArticleDOI
21 Jun 2012-Nature
TL;DR: Spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission are reported, finding that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities.
Abstract: The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets(1-4), supporting the model that planets form by accumulation of dust and ice particles(5). Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets(4,6-9). However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission(10), including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

743 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review current understanding of disk-planet interactions, focusing in particular on physical processes that determine the speed and direction of migration of the planet, and examine the influence of Lindblad and corotation torques as a function of disk properties.
Abstract: As planets form and grow within gaseous protoplanetary disks, the mutual gravitational interaction between the disk and planet leads to the exchange of angular momentum and migration of the planet. We review current understanding of disk-planet interactions, focusing in particular on physical processes that determine the speed and direction of migration. We describe the evolution of low-mass planets embedded in protoplanetary disks and examine the influence of Lindblad and corotation torques as a function of the disk properties. The role of the disk in causing the evolution of eccentricities and inclinations is also discussed. We describe the rapid migration of intermediate-mass planets that may occur as a runaway process and examine the transition to gap formation and slower migration driven by the viscous evolution of the disk for massive planets. The roles and influence of disk self-gravity and magnetohydrodynamic turbulence are discussed in detail, as a function of the planet mass, as is the evolution...

719 citations



Journal ArticleDOI
TL;DR: In this article, Boyajian et al. presented interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array.
Abstract: We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B – V), (V – R), (V – I), (V – J), (V – H), and (V – K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = –0.5 to +0.1 dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by ~3%, and underestimate the radii of stars with radii <0.7 R_☉ by ~5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by ~200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.

681 citations


Journal ArticleDOI
TL;DR: In this article, the Rossiter-McLaughlin effect was used to show that the obliquities of stars with close-in giant planets were initially nearly random, and that the low-obliquity that are often observed are a consequence of star-planet tidal interactions.
Abstract: We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.

658 citations


Journal ArticleDOI
TL;DR: In this paper, Batalha et al. report on the orbital architectures of Kepler systems having multiple planet candidates identified in the analysis of data from the first six quarters of Kepler data and provide a powerful means to study the statistical properties of planetary systems using a generic mass-radius relationship.
Abstract: We report on the orbital architectures of Kepler systems having multiple planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al (2013) These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ~96% of the candidate planetary systems are correctly interpreted as true systems We find that planet pairs show little statistical preference to be near mean-motion resonances We identify an asymmetry in the distribution of period ratios near first-order resonances (eg, 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 10-22 degrees, for the packed systems of small planets probed by these observations

631 citations


Journal ArticleDOI
12 Jan 2012-Nature
TL;DR: It is concluded that stars are orbited by planets as a rule, rather than the exception, and that of stars host Jupiter-mass planets 0.5–10 au (Sun–Earth distance) from their stars.
Abstract: Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17–30% of solar-like stars host a planet. Gravitational microlensing on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002–07) that reveals the fraction of bound planets 0.5–10 au (Sun–Earth distance) from their stars. We find that 17^(+16)_(-9)% of stars host Jupiter-mass planets (0.3–10 M_J, where M_J = 318 M_⊕ plus and M_⊕ plus is Earth’s mass). Cool Neptunes (10–30 M_⊕ plus) and super-Earths (5–10 M_⊕ plus) are even more common: their respective abundances per star are 52^(+22)_(-29)% and 62^(+35)_(-73)% . We conclude that stars are orbited by planets as a rule, rather than the exception.

623 citations


Journal ArticleDOI
TL;DR: In this article, a uniform and detailed analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) was performed for a sample of 1111 FGK dwarf stars from the HARPS GTO planet search program.
Abstract: Context. We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 1111 FGK dwarf stars from the HARPS GTO planet search program. Of these stars, 109 are known to harbor giant planetary companions and 26 stars are exclusively hosting Neptunians and super-Earths.Aims. The two main goals of this paper are to investigate whether there are any differences between the elemental abundance trends for stars of different stellar populations and to characterize the planet host and non-host samples in terms of their [X/H]. The extensive study of this sample, focused on the abundance differences between stars with and without planets will be presented in a parallel paper.Methods. The equivalent widths of spectral lines were automatically measured from HARPS spectra with the ARES code. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the 2010 revised version of the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations we applied both a purely kinematical approach and a chemical method.Results. We found that the chemically separated (based on the Mg, Si, and Ti abundances) thin- and thick disks are also chemically disjunct for Al, Sc, Co, and Ca. Some bifurcation might also exist for Na, V, Ni, and Mn, but there is no clear boundary of their [X/Fe] ratios. We confirm that an overabundance in giant-planet host stars is clear for all studied elements.We also confirm that stars hosting only Neptunian-like planets may be easier to detect around stars with similar metallicities than around non-planet hosts, although for some elements (particulary α -elements) the lower limit of [X/H] is very abrupt.

537 citations


Journal ArticleDOI
TL;DR: In this paper, the presence of a large planet in a disk influences the growth and radial distribution of dust grains, and how observable properties are linked to the mass of the planet, and they combined two-dimensional hydrodynamical disk simulations of disk-planet interactions with state-of-the-art coagulation/fragmentation models to simulate the evolution of dust in a transition disk, which has a gap created by a massive planet.
Abstract: Context. Transition disks are believed to be the final stages of protoplanetary disks, during which a forming planetary system or photoevaporation processes open a gap in the inner disk, drastically changing the disk structure. From theoretical arguments it is expected that dust growth, fragmentation and radial drift are strongly influenced by gas disk structure, and pressure bumps in disks have been suggested as key features that may allow grains to converge and grow efficiently.Aims. We want to study how the presence of a large planet in a disk influences the growth and radial distribution of dust grains, and how observable properties are linked to the mass of the planet.Methods. We combined two-dimensional hydrodynamical disk simulations of disk-planet interactions with state-of-the-art coagulation/fragmentation models to simulate the evolution of dust in a disk, which has a gap created by a massive planet. We computed images at different wavelengths and illustrated our results using the example of the transition disk LkCa15.Results. The gap opened by a planet and the long-range interaction between the planet and the outer disk create a single large pressure bump outside the planetary orbit. Millimeter-sized particles form and accumulate at the pressure maximum and naturally produce ring-shaped sub-millimeter emission that is long-lived because radial drift no longer depletes the large grain population of the disk. For large planet masses around 9 M Jup , the pressure maximum and, therefore, the ring of millimeter particles is located at distances that can be more than twice the star-planet separation, creating a large spatial separation between the gas inner edge of the outer disk and the peak millimeter emission. Smaller grains do get closer to the gap and we predict how the surface brightness varies at different wavelengths.

444 citations


Journal ArticleDOI
TL;DR: In this article, the transmission spectrum of the super-Earth exoplanet GJ1214b was estimated to be at between 1.1 and 1.7 m in the transiting phase.
Abstract: Capitalizing on the observational advantage oered by its tiny M dwarf host, we present HST/WFC3 grism measurements of the transmission spectrum of the super-Earth exoplanet GJ1214b. These are the rst published WFC3 observations of a transiting exoplanet atmosphere. After correcting for a ramp-like instrumental systematic, we achieve nearly photon-limited precision in these observations, nding the transmission spectrum of GJ1214b to be at between 1.1 and 1.7 m. Inconsistent with a cloud-free solar composition atmosphere at 8:2 , the measured achromatic transit depth most likely implies a large mean molecular weight for GJ1214b’s outer envelope. A dense atmosphere rules out bulk compositions for GJ1214b that explain its large radius by the presence of a very low density gas layer surrounding the planet. High-altitude clouds can alternatively explain the at transmission spectrum, but they would need to be optically thick up to 10 mbar or consist of particles with a range of sizes approaching 1 m in diameter. Subject headings: planetary systems: individual (GJ 1214b) | eclipses | techniques: spectroscopic

Journal ArticleDOI
TL;DR: In this article, the authors investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions, and find that an H/He envelope on Kepler11b is highly vulnerable to mass loss.
Abstract: We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

Journal ArticleDOI
21 Sep 2012-Science
TL;DR: The detection of Kepler-47 establishes that close binary stars can host complete planetary systems, and reveals two small planets orbiting a pair of two low-mass stars.
Abstract: We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet’s orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.

Journal ArticleDOI
TL;DR: In this article, a review of the formation process of Sun-like stars in the early days of the solar system is presented, showing that three major steps are involved before the planet-formation period.
Abstract: Our Sun and planetary system were born about 4.5 billion years ago. How did this happen, and what is the nature of our heritage from these early times? This review tries to address these questions from an astrochemical point of view. On the one hand, we have some crucial information from meteorites, comets and other small bodies of the Solar System. On the other hand, we have the results of studies on the formation process of Sun-like stars in our Galaxy. These results tell us that Sun-like stars form in dense regions of molecular clouds and that three major steps are involved before the planet-formation period. They are represented by the prestellar core, protostellar envelope and protoplanetary disk phases. Simultaneously with the evolution from one phase to the other, the chemical composition gains increasing complexity.

Journal ArticleDOI
TL;DR: In this paper, homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets were reported based on the Stellar Parameter Classification (SPC) technique.
Abstract: We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the Stellar Parameter Classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (SME and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between Teff, [Fe/H], and logg when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on logg based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius. Subject headings: planetary systems — stars: abundances — stars: fundamental parameters — techniques: spectroscopic

Journal ArticleDOI
TL;DR: In this article, the effects of important disk properties, namely disk metallicity, mass, and lifetime on fundamental properties of planets like mass and semimajor axis, were systematically studied.
Abstract: Context. This is the fourth paper in a series showing the results of planet population synthesis calculations. In Paper I, we presented our methods. In Paper II, we compared the synthetic and the observed planetary population statistically. Paper III addressed the influences of the stellar mass on the population.Aims. Our goal in this fourth paper is to systematically study the effects of important disk properties, namely disk metallicity, mass, and lifetime on fundamental properties of planets like mass and semimajor axis.Methods. For a large number of protoplanetary disks that have properties following distributions derived from observations, we calculated a population of planets with our formation model. The model is based on the classical core accretion paradigm but self-consistently includes planet migration and disk evolution.Results. We find a very large number of correlations. Regarding the planetary initial mass function, metallicity, M disk , and τ disk play different roles. For high metallicities, giant planets are more frequent. For high M disk , giant planets are more massive. For long τ disk , giant planets are both more frequent and massive. At low metallicities, very massive giant planets cannot form, but otherwise giant planet mass and metallicity are nearly uncorrelated. In contrast, (maximum) planet masses and disk gas masses are correlated. The formation of giant planets is possible for initial planetesimal surface densities ΣS of at least 6 g/cm2 at 5.2 AU. The best spot for giant planet formation is at ~5 AU. In- and outside this distance, higher ΣS are necessary. Low metallicities can be compensated for by high M disk , and vice versa, but not ad infinitum. At low metallicities, giant planets only form outside the ice line, while giant planet formation occurs throughout the disk at high metallicities. The extent of migration increases with M disk and τ disk and usually decreases with metallicity. No clear correlation of metallicity and the semimajor axis distribution of giant planets exists because in low-metallicity disks, planets start farther out, but migrate more, while the contrary applies to high metallicities. The final semimajor axis distribution contains an imprint of the ice line. Close-in low mass planets have a lower mean metallicity than hot Jupiters. The frequency of giant planets varies approximately as M disk 1.2 and τ disk 2 . Conclusions. The properties of protoplanetary disks – the initial and boundary conditions for planet formation – are decisive for the properties of planets, and leave many imprints on the population.

Journal ArticleDOI
TL;DR: In this paper, the authors present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets.
Abstract: We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

Journal ArticleDOI
TL;DR: In this article, the fraction of F, G, and K dwarfs in the solar neighborhood hosting hot Jupiters as measured by the California Planet Survey from the Lick and Keck planet searches was determined.
Abstract: We determine the fraction of F, G, and K dwarfs in the solar neighborhood hosting hot Jupiters as measured by the California Planet Survey from the Lick and Keck planet searches. We find the rate to be 1.2% ± 0.38%, which is consistent with the rate reported by Mayor et al. from the HARPS and CORALIE radial velocity (RV) surveys. These numbers are more than double the rate reported by Howard et al. for Kepler stars and the rate of Gould et al. from the OGLE-III transit search; however, due to small number statistics these differences are of only marginal statistical significance. We explore some of the difficulties in estimating this rate from the existing RV data sets and comparing RV rates to rates from other techniques.

Journal ArticleDOI
TL;DR: In this article, the fundamental concepts of micro-lensing planet searches and their practical application are discussed and the strengths and peculiarities of the method flow from the basic manner in which planets are discovered.
Abstract: Unlike most other planet-detection techniques, gravitational microlensing does not rely on detection of photons from either the host or the planet. Rather, planets are discovered by their gravitational perturbation of light from a more distant source. I review the fundamental concepts of microlensing planet searches and discuss their practical application. I show how the strengths and peculiarities of the method flow from the basic manner in which planets are discovered. In particular, microlensing is sensitive to very low-mass planets on wide orbits and free-floating planets, and can be used to search for planets orbiting host stars with a broad range of masses and Galactocentric distances. However, microlensing events are rare and cannot be predicted in advance, the majority of the host stars are extremely faint, and the planetary signals typically last less than a day. These strengths motivate microlensing searches as powerful, complementary probes of unexplored parameter space that have already provid...

Journal ArticleDOI
TL;DR: In this paper, a template-enhanced radial velocity re-analysis (TERRA) algorithm was proposed to obtain precision radial velocity measurements using least-squares matching of each observed spectrum to a high signal-to-noise ratio template derived from the same observations.
Abstract: Doppler spectroscopy has uncovered or confirmed all the known planets orbiting nearby stars. Two main techniques are used to obtain precision Doppler measurements at optical wavelengths. The first approach is the gas cell method, which consists of least-squares matching of the spectrum of iodine imprinted on the spectrum of the star. The second method relies on the construction of a stabilized spectrograph externally calibrated in wavelength. The most precise stabilized spectrometer in operation is the High Accuracy Radial velocity Planet Searcher (HARPS), operated by the European Southern Observatory in La Silla Observatory, Chile. The Doppler measurements obtained with HARPS are typically obtained using the cross-correlation function (CCF) technique. This technique consists of multiplying the stellar spectrum by a weighted binary mask and finding the minimum of the product as a function of the Doppler shift. It is known that CCF is suboptimal in exploiting the Doppler information in the stellar spectrum. Here we describe an algorithm to obtain precision radial velocity measurements using least-squares matching of each observed spectrum to a high signal-to-noise ratio template derived from the same observations. This algorithm is implemented in our software HARPS-TERRA (Template-Enhanced Radial velocity Re-analysis Application). New radial velocity measurements on a representative sample of stars observed by HARPS are used to illustrate the benefits of the proposed method. We show that, compared with CCF, template matching provides a significant improvement in accuracy, especially when applied to M dwarfs.

Journal ArticleDOI
15 Nov 2012-Nature
TL;DR: In this article, it was shown that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of individual stars.
Abstract: The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.

Journal ArticleDOI
TL;DR: In this paper, the authors presented new calculations of limb-darkening coefficients for the spherically symmetric phoenix models, which were computed by covering the transmission curves of Kepler, CoRoT and Spitzer space missions, as well as the passbands of the Stromgren, Johnson-Cousins, Sloan, and 2MASS.
Abstract: Aims. The knowledge of how the specific intensity is distributed over the stellar disk is crucial for interpreting the light curves of extrasolar transiting planets, double-lined eclipsing binaries, and other astrophysical phenomena. To provide theoretical inputs for light curve modelling codes, we present new calculations of limb-darkening coefficients for the spherically symmetric phoenix models. Methods. The limb-darkening coefficients were computed by covering the transmission curves of Kepler, CoRoT, and Spitzer space missions, as well as the passbands of the Stromgren, Johnson-Cousins, Sloan, and 2MASS. These computations adopted the leastsquare method. In addition, we also calculated the linear and bi-parametric approximations by adopting the flux conservation method as an additional tool for estimating the theoretical error bars in the limb-darkening coefficients. Results. Six laws were used to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and a more general one with 4 terms. The computations are presented for the solar chemical composition, with log g varying between 2.5 and 5.5 and effective temperatures between 1500−4800 K. The adopted microturbulent velocity and the mixing-length parameters are 2.0 km s −1 and 2.0, respectively.

Journal ArticleDOI
TL;DR: In this paper, a model for the formation and evolution of exoplanets has been proposed, which is based on the mass-radius and mass-luminosity diagram of the original mass-distance diagram.
Abstract: Context. A first characterization of extrasolar planets by the observational determination of the radius has recently been achieved for a large number of planets. For some planets, a measurement of the luminosity has also been possible, with many more directly imaged planets expected in the near future. The statistical characterization of exoplanets through their mass-radius and mass-luminosity diagram is becoming possible. This is for planet formation and evolution theory of similar importance as the mass-distance diagram. Aims. Our aim is to extend our planet-formation model into a coupled formation and evolution model. We want to calculate from one single model in a self-consistent way all basic quantities describing a planet: its mass, semimajor axis, composition, radius, and luminosity. We then want to use this model for population synthesis calculations. Methods. In this and a companion paper, we show how we solve the structure equations describing the gaseous envelope of a protoplanet during the early-formation phase, the gas runaway accretion phase, and the evolutionary phase at constant mass on Gyr timescales. We improve the model further with a new prescription for the disk-limited gas accretion rate, an internal structure model for the planetary core assuming a differentiated interior, and the inclusion of radioactive decay as an additional heat source in the core. Results. We study the in situ formation and evolution of Jupiter, the mass-radius relationship of giant planets, the influence of the core mass on the radius, and the luminosity both in the “hot start” and the “cold start” scenario. Special emphasis is placed on the validation of the model by comparing it with other models of planet formation and evolution. We find that our results agree very well with those of more complex models, despite a number of simplifications we make in our calculations. Conclusions. The upgraded model yields the most important physical quantities describing a planet from its beginning as a tiny seed embryo to a Gyr-old planet. This is the case for all planets in a synthetic planetary population. Therefore, we can now use selfconsistently the observational constraints coming from all major observational techniques. This is important in a time where different techniques yield constraints on very diverse sub-populations of planets, and where it is difficult to put all these constraints together in one coherent picture. Our comprehensive formation and evolution model should be helpful in this situation for the understanding of exoplanets.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the available data to the predictions of their own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs.
Abstract: The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color-magnitude diagram. Finally we argue that the range of uncertainty conventionally quoted for the bolometric luminosity of all three planets is too small.

Journal ArticleDOI
TL;DR: In this article, the authors compare the properties of the star KOI 961 and Barnard's Star, a nearby, well-characterized mid-M dwarf, and find that they are similar effective temperatures and metallicities.
Abstract: We present the characterization of the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets, originally discovered by the Kepler Mission. We proceed by comparing KOI 961 to Barnard's Star, a nearby, well-characterized mid-M dwarf. By comparing colors, optical and near-infrared spectra, we find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion and no quiescent H-alpha emission--all of which is consistent with being old M dwarfs. We combine empirical measurements of Barnard's Star and expectations from evolutionary isochrones to estimate KOI 961's mass (0.13 ± 0.05 M_⊙), radius (0.17 ± 0.04 R_⊙) and luminosity (2.40 x 10^(-3.0 ± 0.3) L_⊙). We calculate KOI 961's distance (38.7 ± 6.3 pc) and space motions, which, like Barnard's Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet-candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 Re_⊕, with KOI 961.03 being Mars-sized (Rp = 0.57 ± 0.18 R_⊕), and they represent some of the smallest exoplanets detected to date.

Journal ArticleDOI
TL;DR: In this article, the authors presented the HST ultraviolet spectra of the white dwarfs PG 0843+516, PG 1015+161, SDSS 1228+1040, and GALEX 1931+0117, which accrete circumstellar planetary debris formed from the destruction of asteroids.
Abstract: We present Hubble Space Telescope (HST) ultraviolet spectroscopy of the white dwarfs PG 0843+516, PG 1015+161, SDSS 1228+1040, and GALEX 1931+0117, which accrete circumstellar planetary debris formed from the destruction of asteroids. Combined with optical data, a minimum of five and a maximum of 11 different metals are detected in their photospheres. With metal sinking time-scales of only a few days, these stars are in accretion/diffusion equilibrium, and the photospheric abundances closely reflect those of the circumstellar material. We find C/Si ratios that are consistent with that of the bulk Earth, corroborating the rocky nature of the debris. Their C/O values are also very similar to those of bulk Earth, implying that the planetary debris is dominated by Mg and Fe silicates. The abundances found for the debris at the four white dwarfs show substantial diversity, comparable at least to that seen across different meteorite classes in the Solar system. PG 0843+516 exhibits significant overabundances of Fe and Ni, as well as of S and Cr, which suggests the accretion of material that has undergone melting, and possibly differentiation. PG 1015+161 stands out by having the lowest Si abundance relative to all other detected elements. The Al/Ca ratio determined for the planetary debris around different white dwarfs is remarkably similar. This is analogous to the nearly constant abundance ratio of these two refractory lithophile elements found among most bodies in the Solar system. Based on the detection of all major elements of the circumstellar debris, we calculate accretion rates of ≃1.7 × 108 to ≃1.5 × 109 g s−1. Finally, we detect additional circumstellar absorption in the Si IV 1394, 1403 A doublet in PG 0843+516 and SDSS 1228+1040, reminiscent to similar high-ionization lines seen in the HST spectra of white dwarfs in cataclysmic variables. We suspect that these lines originate in hot gas close to the white dwarf, well within the sublimation radius.

Journal ArticleDOI
TL;DR: In this paper, a general procedure that can quickly be applied to any planet candidate to calculate its false positive probability is presented, taking into account the period, depth, duration, and shape of the signal; the colors of the target star; arbitrary spectroscopic or imaging follow-up observations; and informed assumptions about the populations and distributions of field stars and multiple-star properties.
Abstract: Surveys searching for transiting exoplanets have found many more candidates than they have been able to confirm as true planets. This situation is especially acute with the Kepler survey, which has found over 2300 candidates but has to date confirmed only a small fraction of them as planets. I present here a general procedure that can quickly be applied to any planet candidate to calculate its false positive probability. This procedure takes into account the period, depth, duration, and shape of the signal; the colors of the target star; arbitrary spectroscopic or imaging follow-up observations; and informed assumptions about the populations and distributions of field stars and multiple-star properties. Applying these methods to a sample of known Kepler planets, I demonstrate that many signals can be validated with very limited follow-up observations: in most cases with only a spectrum and an adaptive optics image. Additionally, I demonstrate that this procedure can reliably identify false positive signals. Because of the computational efficiency of this analysis, it is feasible to apply it to all Kepler planet candidates in the near future, and it will streamline the follow-up efforts for Kepler and other current and future transit surveys.

Journal ArticleDOI
TL;DR: In this article, the authors present four sets of light curves from the Kepler spacecraft, each of which shows multiple planets transiting the same star, and report dynamical fits to the transit times, yielding possible values for the planets' masses and eccentricities.
Abstract: Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present four sets of light curves from the Kepler spacecraft, each which of shows multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates that the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets' masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems' architectures, even in cases for which high-precision Doppler follow-up is impractical.

Journal ArticleDOI
TL;DR: A search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations shows no significant signals.
Abstract: We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

Journal ArticleDOI
TL;DR: The first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micron HST/NICMOS data was presented in this paper.
Abstract: We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micron HST/NICMOS data. While sub-millimeter studies suggested there is a dust-depleted cavity with r=0.35, we find scattered light as close as 0.1 (20-28 AU) from the star, with no visible cavity at H, K', or Ks. We find two small-scaled spiral structures which asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h ~ 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5+3,-4 Mj, in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and Ks, we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0.5. We reach 5-sigma contrasts limiting companions to planetary masses, 3-4 MJ at 1.0 and 2 MJ at 1.55 using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.