scispace - formally typeset
Search or ask a question

Showing papers on "Radiometer published in 2016"


Reference BookDOI
TL;DR: Microwave radiometry is concerned with purely passive sensing of naturally generated microwave radiation of thermal origin this article, which is expressed in an apparent temperature called brightness temperature, whose concurrence is expressed by the objects' emission (absorption), reflection, and transmission properties and its true temperature.
Abstract: Microwave radiometry is concerned with purely passive sensing of naturally generated microwave radiation of thermal origin. Microwave radiometers are corresponding measuring devices typically designed and built as a very low-noise receiver followed by a signal recording unit. Usually, radiometers contain an antenna as the first reception component collecting the incoming radiation, and they measure radiation power expressed in an apparent temperature called brightness temperature. The observable brightness temperature of any object or surface depends on various chemical and physical quantities, whose concurrence is expressed by the objects’ emission (absorption), reflection, and transmission properties and its true temperature. Since the Earth has a temperature typically close to 300 K and the universe close to 3 K, a nearly arbitrary mixture of these two extreme temperatures can be expected. Consequently, our environment can show quite different brightness temperature values depending on the direction of actual observation. On the one hand, radiometer measurements are carried out stationary with respect to the antenna pointing direction in order to observe time-dependent variations of the brightness temperature. On the other hand, the brightness temperature of a whole scene is scanned in order to acquire locally changing one- or two-dimensional profiles, while the latter ones are assembled as a two-dimensional image comparable to a conventional photograph. Depending on the specific application, various antenna types are considered, where usually hard requirements with respect to beam width, side-lobe level, scan capability, and losses have to be addressed (▶Transmission Lines). Radiometric measurements are performed for Earth or planetary observation in space (▶Space Antennas including Terahertz Antennas), from aircraft platforms on the Earth’s surface and the atmosphere, or on the ground, either sensing the environment or sensing the universe, the latter being performed in radio astronomy (▶Antennas in Radio Telescope Systems). Usually, the brightness temperature is rarely used as the physical quantity of interest. More often, it is transferred via adequate physical models to other secondary or third quantities for more direct use in the case of Earth observation (e.g., soil moisture, ocean salinity, rain rate, snow cover, etc.), being performed already since the 1950s of the last century. However, in the last decades, microwave radiometry is as well used in many safety- and security-related applications, for which often only sufficient temperature contrast between an object and its surrounding is required besides spatial resolution for detection and recognition purposes. In this chapter relevant fundamentals of microwave radiometry are outlined for better understanding of antenna requirements, followed by an overview of typical types of radiometer antenna systems. Some existing antenna systems are discussed in order to illustrate the variability with respect to applications. A section on basic antenna quantities addresses key figures for practical design and verification and illustrates the results exemplarily for selected cases. Finally, a brief summary and an outlook on possible future implementations and other frequency ranges are given.

142 citations


Journal ArticleDOI
TL;DR: A preliminary evaluation of the SMAP radiometer soil moisture product against in situ measurements collected from three networks that cover different climatic and land surface conditions, including two dense networks established in the U.S. and Finland, and one sparse network set up in Romania shows that it well reproduces the temporal evolution and anomalies of the observed soil moisture.
Abstract: The Soil Moisture Active Passive (SMAP) mission, which is the newest L-band satellite that is specifically designed for soil moisture monitoring, was launched on January 31, 2015. A beta quality version of the SMAP radiometer soil moisture product was recently released to the public. It is crucial to evaluate the reliability of this product before it can be routinely used in hydrometeorological studies at a global scale. In this paper, we carried out a preliminary evaluation of the SMAP radiometer soil moisture product against in situ measurements collected from three networks that cover different climatic and land surface conditions, including two dense networks established in the U.S. and Finland, and one sparse network set up in Romania. Results show that the SMAP soil moisture product is in good agreement with the in situ measurements, although it exhibits dry or wet bias at different network regions. It well reproduces the temporal evolution and anomalies of the observed soil moisture with a favorable correlation greater than 0.7. The overall ubRMSE (unbiased root mean square error) of SMAP product is 0.036 m3 $\cdot$ m−3, well within the mission requirement of 0.04 m3 $\cdot$ m−3. The error sources of SMAP soil moisture product may be associated with the parameterization of vegetation and surface roughness but still needs to be tested and confirmed in more extent. Considering that the algorithms are still under refinement, it can be reasonably expected that hydrometeorological applications will benefit from the SMAP radiometer soil moisture product.

97 citations



Journal ArticleDOI
TL;DR: In this article, a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles is presented.
Abstract: . This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

86 citations


Journal ArticleDOI
TL;DR: The Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors as discussed by the authors.
Abstract: The Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration difference...

85 citations


Journal ArticleDOI
TL;DR: The National Aeronautics and Space Administration's (NASA) Soil Moisture Active and Passive (SMAP) mission is providing global measurements of soil moisture and freeze/thaw state.
Abstract: The National Aeronautics and Space Administration's (NASA) Soil Moisture Active and Passive (SMAP) mission, which was launched on January 31, 2015, is providing global measurements of soil moisture and freeze/thaw state. The SMAP radiometer operates within the protected Earth Exploration Satellite Service passive frequency allocation of 1400-1427 MHz. However, unauthorized in-band transmitters and out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum are known to cause interference to microwave radiometry in this band. Because measurement corruption by these terrestrial transmissions, which is referred to as radio-frequency interference (RFI), threatens mission success, the SMAP radiometer includes special flight hardware to enable the detection and filtering of RFI. Results from the first year of SMAP data show the presence of RFI with frequent occurrence over Asia and Europe. During the calibration/validation stage of the mission, the RFI detection and mitigation algorithms were modified to provide enhanced performance. Analysis of the L1B_TB products indicates good algorithmic performance with respect to RFI detection and removal. However, some regions of the globe (e.g., Japan) continue to experience complete data loss. This paper summarizes updates to the SMAP RFI processing algorithms based on prelaunch tests and on-orbit measurements, as well as RFI information obtained in SMAP's first year on orbit.

80 citations


Journal ArticleDOI
TL;DR: This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies.
Abstract: This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

64 citations


Journal ArticleDOI
TL;DR: The GNSS derived Path Delay Plus (GPD+), the most recent algorithm developed at the University of Porto to retrieve improved WTC for radar altimeter missions, allows the recovery of a significant number of measurements, ensuring the continuity and consistency of the correction in the open-ocean/coastal transition zone and at high latitudes.
Abstract: Due to its large space-time variability, the wet tropospheric correction (WTC) is still considered a significant error source in satellite altimetry. This paper presents the GNSS (Global Navigation Satellite Systems) derived Path Delay Plus (GPD+), the most recent algorithm developed at the University of Porto to retrieve improved WTC for radar altimeter missions. The GPD+ are WTC estimated by space-time objective analysis, by combining all available observations in the vicinity of the point: valid measurements from the on-board microwave radiometer (MWR), from GNSS coastal and island stations and from scanning imaging MWR on board various remote sensing missions. The GPD+ corrections are available both for missions which do not possess an on-board microwave radiometer such as CryoSat-2 (CS-2) and for all missions which carry this sensor, by addressing the various error sources inherent to the MWR-derived WTC. To ensure long-term stability of the corrections, the large set of radiometers used in this study have been calibrated with respect to the Special Sensor Microwave Imager (SSM/I) and the SSM/I Sounder (SSM/IS). The application of the algorithm to CS-2 and Geosat Follow-on (GFO), as representative altimetric missions without and with a MWR aboard the respective spacecraft, is described. Results show that, for both missions, the new WTC significantly reduces the sea level anomaly (SLA) variance with respect to the model-based corrections. For GFO, the new WTC also leads to a large reduction in SLA variance with respect to the MWR-derived WTC, recovering a large number of observations in the coastal and polar regions and full sets of tracks and several cycles when MWR measurements are missing or invalid. Overall, the algorithm allows the recovery of a significant number of measurements, ensuring the continuity and consistency of the correction in the open-ocean/coastal transition zone and at high latitudes.

63 citations


Journal ArticleDOI
TL;DR: The L-band passive microwave data from the Soil Moisture Active Passive (SMAP) observatory are investigated for remote sensing of ocean surface winds during severe storms and the correlation is sufficiently high between the maximum wind speeds retrieved by SMAP with a 60-km resolution and the best track peak winds estimated by the National Hurricane Center and the Joint Typhoon Warning Center to allow them to be estimated bySMAP.
Abstract: The L-band passive microwave data from the Soil Moisture Active Passive (SMAP) observatory are investigated for remote sensing of ocean surface winds during severe storms. The surface winds of Joaquin derived from the real-time analysis of the Center for Advanced Data Assimilation and Predictability Techniques at Penn State support the linear extrapolation of the Aquarius and SMAP geophysical model functions (GMFs) to hurricane force winds. We apply the SMAP and Aquarius GMFs to the retrieval of ocean surface wind vectors from the SMAP radiometer data to take advantage of SMAP's two-look geometry. The SMAP radiometer winds are compared with the winds from other satellites and numerical weather models for validation. The root-mean-square difference (RMSD) with WindSat or Special Sensor Microwave Imager/Sounder is 1.7 m/s below 20-m/s wind speeds. The RMSD with the European Center for Medium-Range Weather Forecasts direction is 18° for wind speeds between 12 and 30 m/s. We find that the correlation is sufficiently high between the maximum wind speeds retrieved by SMAP with a 60-km resolution and the best track peak winds estimated by the National Hurricane Center and the Joint Typhoon Warning Center to allow them to be estimated by SMAP with a correlation coefficient of 0.8 and an underestimation by 8%–18% on average, which is likely due to the effects of spatial averaging. There is also a good agreement with the airborne Stepped-Frequency Radiometer wind speeds with an RMSD of 4.6 m/s for wind speeds in the range of 20–40 m/s.

60 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric Lband Multi-beam Radiometer and the active Lband system F-SAR of DLR were flown simultaneously on six dates in 2013.
Abstract: The objective of the NASA Soil Moisture Active Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments are a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer and the active L-band system F-SAR of DLR were flown simultaneously on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e., the main land cover types and all experimental monitoring sites. Here, we used the obtained data sets as a test bed for the analysis of three active–passive fusion techniques: 1) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data; 2) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture; and 3) fusion of two single-source soil moisture products from radar and radiometer. Results indicate that the regression parameters $\beta$ are dependent on the radar vegetation index. The best performance was obtained by the fusion of radiometer brightness temperatures and radar backscatter, which was able to reach the same accuracy as single-source coarse-scale radiometer soil moisture retrieval but on a higher spatial resolution.

57 citations


Journal ArticleDOI
TL;DR: An assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), radiance dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, spectral performance, response-vs-scan (RVS), and scattered light response is provided.
Abstract: The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument has 22 spectral bands covering the spectrum between 0.4 and 12.6 μm. It is a cross-track scanning radiometer capable of providing global measurements twice daily, through observations at two spatial resolutions, 375 m and 750 m at nadir for the imaging and moderate bands, respectively. This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the government independent team to generate the at-launch baseline radiometric performance and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), radiance dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, spectral performance, response-vs-scan (RVS), and scattered light response. A set of performance metrics generated during the pre-launch testing program will be compared to both the VIIRS sensor specification and the SNPP VIIRS pre-launch performance.

Journal ArticleDOI
TL;DR: An approach for deriving volumetric soil moisture using satellite passive microwave radiometry from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) was developed in this study and demonstrates more realistic global patterns and seasonal dynamics relative to the baseline University of Montana soil moisture product.
Abstract: Accurate mapping of long-term global soil moisture is of great importance to earth science studies and a variety of applications. An approach for deriving volumetric soil moisture using satellite passive microwave radiometry from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) was developed in this study. Unlike the major AMSR-E retrieval algorithms that assume fixed scattering albedo values over the globe, the proposed algorithm adopts a weighted averaging strategy for soil moisture estimation based on a dynamic selection of albedo values that are empirically determined. The resulting soil moisture retrievals demonstrate more realistic global patterns and seasonal dynamics relative to the baseline University of Montana soil moisture product. Quantitative analysis of the new approach against in situ soil moisture measurements over four study regions also indicates improvements over the baseline algorithm, with coefficients of determination $(R^2)$ between the retrievals and in situ measurements increasing by approximately 16.9% and 41.5% and bias-corrected root-mean-square errors decreasing by about 25.0% and 38.2% for ascending and descending orbital data records, respectively. The resulting algorithm is readily applied to similar microwave sensors, including the Advanced Microwave Scanning Radiometer 2, and its retrieval strategy is also applicable to other passive microwave sensors, including lower frequency (L-band) observations from the National Aeronautics and Space Administration Soil Moisture Active Passive mission.

Journal ArticleDOI
TL;DR: Results show that PMW precipitation retrievals from the GPM constellation of radiometers provide a reliable and quantitative description of the precipitation (instantaneous and on the daily scale) throughout the evolution of the rainfall systems in the Mediterranean region.
Abstract: Precipitation retrievals exploiting the available passive microwave (PMW) observations by cross-track and conically scanning satellite-borne radiometers in the Global Precipitation Measurement (GPM) mission era are used to monitor and characterize heavy precipitation events that occurred during the Fall 2014 in Italy. Different physically based PMW precipitation retrieval algorithms are used: the Cloud Dynamics and Radiation Database (CDRD) and Passive microwave Neural network Precipitation Retrieval (PNPR), used operationally in the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on support to Operational Hydrology and Water Management (H-SAF), and the National Aeronautics and Space Administration (NASA) Goddard PROFiling algorithm (GPROF). Results show that PMW precipitation retrievals from the GPM constellation of radiometers provide a reliable and quantitative description of the precipitation (instantaneous and on the daily scale) throughout the evolution of the precipitation systems in the Mediterranean region. The comparable relative errors among gauges, radar, and combination of radiometer overpasses legitimize the use of PMW estimates as a valuable and independent tool for monitoring precipitation. The pixel-based comparison with dual-polarization radars and raingauges indicates the ability of the different sensors to identify different precipitation areas and regimes ( $0.60 FAR $ ETS $ ME $ , with values depending on the radiometer and on the precipitation product). This is particularly relevant in the presence of complex orography in proximity of coastal areas, as for the analyzed cases. The different characteristics of the radiometers (i.e., viewing geometry, spatial resolution, channel assortment) and of retrieval techniques, as well as the limitations of the ground-based reference datasets, are taken into consideration in the evaluation of the accuracy and consistency of the retrievals.

Journal ArticleDOI
TL;DR: In this article, the performance of 51 commercially available and prototype radiometers used for measuring global horizontal irradiances or direct normal irradiances (DNI) was compared under clear sky, partly cloudy, and mostly cloudy conditions to reference values of low estimated measurement uncertainties.

Journal ArticleDOI
07 Sep 2016
TL;DR: The Nordic Snow Radar Experiment (NoSREx) campaign as mentioned in this paper provided a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season.
Abstract: . The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankyla, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

Journal ArticleDOI
TL;DR: In this paper, the authors used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (100 ha) burn blocks.
Abstract: Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

Journal ArticleDOI
TL;DR: In this article, the authors assess the potential contributions of two new satellite datasets, derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-National Polar-Orbiting Partnership satellite and the Advanced Microwave ScanningRadiometer 2 (AMSR2) onboard the Global Change Observation Mission-Water (GCOM-W) satellite, to the quality of global sea surface temperature (SST) analyses at the Canadian Meteorological Centre (CMC).
Abstract: Experiments are carried out to assess the potential contributions of two new satellite datasets, derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi–National Polar-Orbiting Partnership satellite and the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission–Water (GCOM-W) satellite, to the quality of global sea surface temperature (SST) analyses at the Canadian Meteorological Centre (CMC). The new datasets are assimilated both separately and together. Verification of the analyses against independent data shows that the VIIRS and AMSR2 datasets yield analyses with similar global average errors, with the VIIRS analysis performing better during some seasons and the AMSR2 analysis performing better in others. Seasonal cloudiness in some regions diminishes the availability of VIIRS retrievals, resulting in better performance by the AMSR2 analysis. Both datasets were assimilated together along with data from the Advanced Very Hig...

Journal ArticleDOI
TL;DR: In this paper, an automated above water hyperspectral radiometer was deployed on a Research Vessel in tropical waters off northern Australia based on the standard NIR atmospheric correction implemented in SeaDAS, and spectral comparisons of the radiometer data with VISible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua for contrasting water types were conducted.
Abstract: Calibration and validation of satellite observations are essential and on-going tasks to ensure compliance with mission accuracy requirements. An automated above water hyperspectral radiometer significantly augmented Australia’s ability to contribute to global and regional ocean color validation and algorithm design activities. The hyperspectral data can be re-sampled for comparison with current and future sensor wavebands. The continuous spectral acquisition along the ship track enables spatial resampling to match satellite footprint. This study reports spectral comparisons of the radiometer data with Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua for contrasting water types in tropical waters off northern Australia based on the standard NIR atmospheric correction implemented in SeaDAS. Consistent match-ups are shown for transects of up to 50 km over a range of reflectance values. The MODIS and VIIRS satellite reflectance data consistently underestimated the in situ spectra in the blue with a bias relative to the “dynamic above water radiance and irradiance collector” (DALEC) at 443 nm ranging from 9.8 × 10−4 to 3.1 × 10−3 sr−1. Automated acquisition has produced good quality data under standard operating and maintenance procedures. A sensitivity analysis explored the effects of some assumptions in the data reduction methods, indicating the need for a comprehensive investigation and quantification of each source of uncertainty in the estimate of the DALEC reflectances. Deployment on a Research Vessel provides the potential for the radiometric data to be combined with other sampling and observational activities to contribute to algorithm development in the wider bio-optical research community.

Journal ArticleDOI
15 May 2016-Icarus
TL;DR: In this paper, Anderson et al. re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere.

Journal ArticleDOI
TL;DR: In this article, the authors compared the RTM with the Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz. But the results were not supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.
Abstract: The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

Journal ArticleDOI
TL;DR: In this article, the authors established a methodology for calculating uncertainties in sea surface temperature estimates from coefficient-based satellite retrievals, which enables validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records.

Proceedings ArticleDOI
10 Jul 2016
TL;DR: The effort to enhance the resolution of SMAP radiometer data is summarized, based on the Backus-Gilbert optimum interpolation theory, which is the classical inversion method in microwave radiometry.
Abstract: In this paper we summarize the effort to enhance the resolution of SMAP radiometer data. The SMAP radiometer sampling of the Earth surface provides overlapping measurements along scan and along track. The oversampling combined with the given antenna gain function allows reconstruction of the scene with improved resolution. The applied technique is based on the Backus-Gilbert optimum interpolation theory, which is the classical inversion method in microwave radiometry. The results shown in this paper are based on the simulated SMAP measurements and are applicable to the real SMAP radiometer measurements.

Journal ArticleDOI
TL;DR: In this paper, the authors present details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere.
Abstract: . This paper presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

Journal ArticleDOI
TL;DR: Improvements have reduced the measurement uncertainties of solar spectral UV irradiance measurements from 4.8% in 2005 to 2.0% (k=2) in the spectral region above 310 nm by the construction of a new reference spectroradiometer, QasumeII.
Abstract: One major objective of the European Joint Research Project “Traceability for surface spectral solar ultraviolet (UV) radiation” was to reduce the uncertainty of spectral UV measurements. The measurement instrument used for this work was the portable UV European reference spectroradiometer Qasume. The calibration uncertainty of this instrument was decreased and validated by a comparison of direct calibrations against a primary standard for spectral irradiance, a high temperature blackbody radiator, and against a reference detector using a spectrally tunable laser as a monochromatic source. The spectral irradiance responsivity of the reference detector is traceable to the primary standard of optical power, realized through a cryogenic radiometer, and to the SI unit of meter. The measuring technique was improved by the construction of a new reference spectroradiometer, QasumeII. An improved input optics removes the dependences of the measured solar irradiance on the angle of incident for solar zenith angle smaller than 75 deg. Moreover, a hybrid photon detection system enables continuous tracking of the instrument’s responsivity changes. For both spectroradiometer systems an uncertainty budget was calculated. The improvements have reduced the measurement uncertainties of solar spectral UV irradiance measurements from 4.8% in 2005 to 2.0% (k=2) in the spectral region above 310 nm. The largest sources of uncertainty were the absolute spectral irradiance responsivity calibration, the angular response uncertainty, and the instrument stability using the hybrid detector, which were reduced from 3.6% to 1.1%, from 1.2% to 0.6%, and from 0.65% to 0.4%, with respect to the situation prior to the project. The new instrument was validated during a four month intercomparison relative to the Qasume reference. The mean ratio of the solar irradiance scans between the two reference spectroradiometers has an offset of +0.7% and a standard deviation of ±1.5% for a wavelength greater than 305 nm, which is well within the combined uncertainty of 3.7% calculated from the uncertainties of the two systems.

Journal ArticleDOI
TL;DR: In this article, a pair of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique were used to measure turbulent temperature fluctuations on the ASDEX upgrade tokamak.
Abstract: Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρtor = 0.82, 0.75, and 0.68, respectively.

Journal ArticleDOI
TL;DR: In this article, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms, and the size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14-and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar.
Abstract: In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

Journal ArticleDOI
TL;DR: In this paper, a framework is developed by linking the Community Land Model, version 4 (CLM4), and a microwave radiative transfer model (RTM) with the Data Assimilation Research Testbed (DART).
Abstract: Very few frameworks exist that estimate global-scale soil moisture through microwave land data assimilation (DA). Toward this goal, such a framework has been developed by linking the Community Land Model, version 4 (CLM4), and a microwave radiative transfer model (RTM) with the Data Assimilation Research Testbed (DART). The deterministic ensemble adjustment Kalman filter (EAKF) within DART is utilized to estimate global multilayer soil moisture by assimilating brightness temperature observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). A 40-member ensemble of Community Atmosphere Model, version 4.0 (CAM4.0), reanalysis is adopted to drive CLM4 simulations. Space-specific, time-invariant microwave parameters are precalibrated to minimize uncertainties in RTM. Besides, various methods are designed to upscale AMSR-E observations for computational efficiency and time shift CAM4.0 forcing to facilitate global daily assimilations. A series of experiments are c...

Journal ArticleDOI
TL;DR: In this paper, the sampling uncertainty in gridded L3U sea surface temperature (SST) data is derived as a function of the percentage of clear-sky pixels available and the SST variability in that subsample.

Journal ArticleDOI
15 Jul 2016-Icarus
TL;DR: In this paper, the ground-projected effective field of view (EFOV) for point-based datasets was calculated using knowledge of instrumental characteristics and observation geometry, and applied to data from the LRO Diviner Lunar Radiometer Experiment, a visible to far-infrared multispectral radiometer which acquires radiometric measurements of reflected visible and emitted infrared radiation of the Moon in 9 spectral channels between 0.35 and 400 µm.

Journal ArticleDOI
TL;DR: In this paper, an analytical expression for the downscaled brightness temperature of the Level-2 Active-Passive soil moisture product (L2_SM_AP) at 9 km is derived by merging of active and passive L-band observations.
Abstract: NASA's Soil Moisture Active Passive (SMAP) mission objective is global mapping of surface volumetric soil moisture at 10-km resolution every two to three days and with accuracy of 0.04 cm3 cm−3 (one sigma). In order to achieve this resolution and accuracy, the SMAP utilizes L-band radar and L-band radiometer measurements. The instruments share a rotating 6-m mesh reflector antenna that scans across a 1000-km swath in order to meet the required data refresh rate. The Level-2 Active–Passive soil moisture product (L2_SM_AP) at 9 km is retrieved from the disaggregated/downscaled brightness temperature obtained by merging of active and passive L-band observations. The baseline L2_SM_AP algorithm disaggregates the coarse-resolution (∼36 km) brightness temperatures of the SMAP L-band radiometer using the high-resolution (∼3 km) backscatter data from the SMAP L-band radar with unfocused synthetic aperture processing. The inversion of brightness temperature to estimate surface soil moisture is more mature when compared with inversions of radar backscatter. This is the primary driver of the brightness temperature disaggregation approach to the combined active–passive surface soil moisture product. Furthermore, this approach allows some consistency with the coarse-resolution radiometer-only surface soil moisture product since the disaggregated brightness temperatures sums to the radiometer measurement. The disaggregated brightness temperature contains instrument errors (∼0.7 dB for co-pol backscatter and ∼1.0 dB for cross-pol backscatter, and ∼1.3 K in brightness temperature) inherent in the radar and radiometer. Furthermore, the algorithm has two critical parameters that add uncertainty. Finally, correction of the land brightness temperature (used in the inversion) for water body contributions is a source of uncertainty. In this paper, we introduce analytical expressions for the SMAP downscaled brightness temperature due to all these sources of uncertainty. The expressions allow estimation of uncertainty (in kelvin) for each data granule of the SMAP L2_SM_AP product. Since the uncertainties depend on the given ground conditions, e.g., existing water body fraction and local algorithm parameters that depend on vegetation cover and landscape heterogeneity, it is necessary to evaluate the uncertainty for each data granule. In this paper, we show that the uncertainty expressions closely match Monte Carlo simulations with an overall difference of only ∼0.1 K. Whereas Monte Carlo estimates of uncertainty can only be afforded for a nominal case (such as those typically reported in Algorithm Theoretical Basis Documents as uncertainty tables), the analytical expressions allow uncertainty estimates for every data granule. The expressions are now used to provide uncertainty standard deviation of downscaled brightness temperature at 9 km in the SMAP L2_SM_AP product. These standard deviations are useful for the following: 1) guidance on the expected level of error in the estimate brightness temperature due to the downscaling process and 2) observation error in direct radiance data assimilation.