scispace - formally typeset
Search or ask a question

Showing papers on "Serotonin published in 2014"


Journal ArticleDOI
06 Aug 2014-Neuron
TL;DR: Using viral tracing combined with electrophysiology, it is found that GABA and serotonin neurons in the DR receive excitatory, inhibitory, and peptidergic inputs from the same specific brain regions.

273 citations


Journal ArticleDOI
TL;DR: A model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors is presented.
Abstract: Decreased serotonergic activity has been implicated in anxiety and major depression, and antidepressants directly or indirectly increase the long-term activity of the serotonin system. A key component of serotonin circuitry is the 5-HT1A autoreceptor, which functions as the major somatodendritic autoreceptor to negatively regulate the “gain” of the serotonin system. In addition, 5-HT1A heteroreceptors are abundantly expressed post-synaptically in the prefrontal cortex (PFC), amygdala, and hippocampus to mediate serotonin actions on fear, anxiety, stress, and cognition. Importantly, in the PFC 5-HT1A heteroreceptors are expressed on at least two antagonist neuronal populations: excitatory pyramidal neurons and inhibitory interneurons. Rodent models implicate the 5-HT1A receptor in anxiety- and depression-like phenotypes with distinct roles for pre- and post-synaptic 5-HT1A receptors. In this review, we present a model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors. The model postulates that behavioral phenotype shifts as serotonin activity increases from none (depressed/aggressive not anxious) to low (anxious/depressed) to high (anxious, not depressed). We identify a set of conserved transcription factors including Deaf1, Freud-1/CC2D1A, Freud-2/CC2D1B and glucocorticoid receptors that may confer deleterious regional changes in 5-HT1A receptors in depression, and how future treatments could target these mechanisms. Further studies to specifically test the roles and regulation of pyramidal vs. glial populations of 5-HT receptors are needed better understand the role of serotonin in anxiety and depression and to devise more effective targeted therapeutic approaches.

231 citations


Journal ArticleDOI
TL;DR: Optogenetic mice that selectively express channelrhodopsin in serotonin neurons are developed and tested, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward.

207 citations


Journal ArticleDOI
TL;DR: A modified rabies virus is used to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR) and suggests three major input streams: a medial stream regulates MR serotonin neurons, an intermediate stream regulates DR serotonin and VTA dopamine neurons, and a lateral stream regulates SNc dopamine neurons.

205 citations


Journal ArticleDOI
TL;DR: The pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcath inone (3-FMC), pentylone, ethcathInone, buphedrone

182 citations


Journal ArticleDOI
TL;DR: In an aged transgenic AD mouse model, citalopram, a selective serotonin reuptake inhibitor, decreased Aβ in brain interstitial fluid in a dose-dependent manner and demonstrates key target engagement for future AD prevention trials.
Abstract: Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer's disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor, decreased Aβ in brain interstitial fluid in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested the growth of preexisting plaques and reduced the appearance of new plaques by 78%. In healthy human volunteers, citalopram's effects on Aβ production and Aβ concentrations in cerebrospinal fluid (CSF) were measured prospectively using stable isotope labeling kinetics, with CSF sampling during acute dosing of citalopram. Aβ production in CSF was slowed by 37% in the citalopram group compared to placebo. This change was associated with a 38% decrease in total CSF Aβ concentrations in the drug-treated group. The ability to safely decrease Aβ concentrations is potentially important as a preventive strategy for AD. This study demonstrates key target engagement for future AD prevention trials.

180 citations


Journal ArticleDOI
TL;DR: Postmortem and in vivo molecular imaging studies of serotonin function in schizophrenia indicated possible 5-HT alterations at psychosis onset, although due to the limited number of studies it was not possible to combine studies in a meta-analysis.

160 citations


Journal ArticleDOI
01 Jun 2014-Gut
TL;DR: Observations suggest that that peripheral TPH inhibitors uncouple the positive linkage of enterochromaffin cell-derived 5-HT to intestinal inflammation and lack deleterious effects on constitutive intestinal motility in mice.
Abstract: Objective Enterochromaffin cell-derived serotonin (5-HT) promotes intestinal inflammation. We tested hypotheses that peripheral tryptophan hydroxylase (TPH) inhibitors, administered orally, block 5-HT biosynthesis and deplete 5-HT from enterochromaffin cells sufficiently to ameliorate intestinal inflammation; moreover, peripheral TPH inhibitors fail to enter the murine enteric nervous system (ENS) or central nervous systems and thus do not affect constitutive gastrointestinal motility. Design Two peripheral TPH inhibitors, LP-920540 and telotristat etiprate (LX1032; LX1606) were given orally to mice. Effects were measured on 5-HT levels in the gut, blood and brain, 5-HT immunoreactivity in the ENS, gastrointestinal motility and severity of trinitrobenzene sulfonic acid (TNBS)-induced colitis. Quantitation of clinical scores, histological damage and intestinal expression of inflammation-associated cytokines and chemokines with focused microarrays and real-time reverse transcriptase PCR were employed to evaluate the severity of intestinal inflammation. Results LP-920540 and LX1032 reduced 5-HT significantly in the gut and blood but not in the brain. Neither LP-920540 nor LX1032 decreased 5-HT immunoreactive neurons or fibres in the myenteric plexus and neither altered total gastrointestinal transit time, colonic motility or gastric emptying in mice. In contrast, oral LP-920540 and LX1032 reduced the severity of TNBS-induced colitis; the expression of 24% of 84 genes encoding inflammation-related cytokines and chemokines was lowered at least fourfold and the reduced expression of 17% was statistically significant. Conclusions Observations suggest that that peripheral TPH inhibitors uncouple the positive linkage of enterochromaffin cell-derived 5-HT to intestinal inflammation. Because peripheral TPH inhibitors evidently do not enter the murine ENS, they lack deleterious effects on constitutive intestinal motility in mice.

158 citations


Journal ArticleDOI
TL;DR: There is strong and growing evidence for a functional dissociation between auto- and heteroreceptor populations in mediating anxiety and depressive-like behaviors, respectively.
Abstract: Rationale Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT1A) subtype, in both disorders.

155 citations



Journal ArticleDOI
TL;DR: Fluoxetine and sertraline have a significant impact on the behaviour and neurophysiology of this amphipod at environmentally relevant concentrations with effects observed after relatively short periods of time.

Journal ArticleDOI
TL;DR: The chemical neuroanatomy of the zebrafish serotonergic system is reviewed, followed by an analysis of the role of serotonin in zebra fish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Abstract: Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.

Journal ArticleDOI
TL;DR: The serotonin-induced modulation of various systems involved in mnesic function including cholinergic, dopaminergic, GABAergic, glutamatergic transmissions as well as amyloidogenesis and intracellular pathways are discussed.
Abstract: Serotonin, or 5-hydroxytryptamine (5-HT), is found to be involved in many physiological or pathophysiological processes including cognitive function. Seven distinct receptors (5-HT1-7), each with several subpopulations, have been identified for serotonin, which are different in terms of localization and downstream signaling. Because of the development of selective agonists and antagonists for these receptors as well as transgenic animal models of cognitive disorders, our understanding of the role of serotonergic transmission in learning and memory has improved in recent years. A large body of evidence indicates the interplay between serotonergic transmission and other neurotransmitters including acetylcholine, dopamine, γ-aminobutyric acid (GABA) and glutamate, in the neurobiological control of learning and memory. In addition, there has been an alteration in the density of serotonergic receptors in aging and Alzheimer's disease, and serotonin modulators are found to alter the process of amyloidogenesis and exert cognitive-enhancing properties. Here, we discuss the serotonin-induced modulation of various systems involved in mnesic function including cholinergic, dopaminergic, GABAergic, glutamatergic transmissions as well as amyloidogenesis and intracellular pathways.

Journal ArticleDOI
TL;DR: The ERG anomalies reported in psychiatric disorders might serve as biomarkers of central monoaminergic dysfunction, thus promoting ERG measurements as a useful tool in psychiatric research.

Journal ArticleDOI
TL;DR: This review focuses on possible cross talk between two serotonin receptors, 5‐ HT1A and the 5‐HT7, and the implication of heterodimerization in the development and maintenance of depression.
Abstract: Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.

Journal ArticleDOI
TL;DR: Results indicate that an acute increase in 5-HT release from the median raphe nucleus enhances anxiety, and there is no known method that can reversibly, selectively, and temporarily control serotonergic activity.
Abstract: Whether increased serotonin (5-HT) release in the forebrain attenuates or enhances anxiety has been controversial for over 25 yr. Although there is considerable indirect evidence, there is no direct evidence that indicates a relationship between acute 5-HT release and anxiety. In particular, there is no known method that can reversibly, selectively, and temporally control serotonergic activity. To address this issue, we generated transgenic animals to manipulate the firing rates of central 5-HT neurons by optogenetic methods. Activation of serotonergic neurons in the median raphe nucleus was correlated to enhanced anxiety-like behaviour in mice, whereas activation of serotonergic neurons in the dorsal raphe nucleus had no effect on anxiety-like behaviour. These results indicate that an acute increase in 5-HT release from the median raphe nucleus enhances anxiety. Received 24 December 2013; Reviewed 28 January 2014; Revised 30 March 2014; Accepted 1 April 2014; First published online 21 May 2014

Journal ArticleDOI
12 Jun 2014-PLOS ONE
TL;DR: The observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions, however the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.
Abstract: A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

Journal ArticleDOI
TL;DR: The findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling.
Abstract: Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset. Our findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling.

Journal ArticleDOI
TL;DR: Evidence is provided of a functional serotonin receptor (Sm5HTR) in S. mansoni that is abundantly distributed in the worm's nervous system and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism.
Abstract: Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni.

Journal ArticleDOI
TL;DR: The results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantsibodies in GAS-related neuropsychiatric disorders.
Abstract: Group A β-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naive rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naive rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naive rats infused with IgG purified from adjuvant-exposed rats as well as of naive rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naive rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders.

Journal ArticleDOI
TL;DR: It is reported that indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism, plays a key role in epilepsy-associated depressive-like behavior in epileptic rats with chronic TLE.
Abstract: Depression has most often been diagnosed in patients with temporal lobe epilepsy (TLE), but the mechanism underlying this association remains unclear. In this study, we report that indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism, plays a key role in epilepsy-associated depressive-like behavior. Rats which develop chronic epilepsy following pilocarpine status epilepticus exhibited a set of interictal disorders consistent with depressive-like behavior. Changes of depressive behavior were examined by taste preference test and forced swim test; brain IL-1β, IL-6 and IDO1 expression were quantified using real-time reverse transcriptase PCR; brain kynurenine/tryptophan and serotonin/tryptophan ratios were analyzed by liquid chromatography-mass spectrometry. Oral gavage of minocycline or subcutaneous injection of 1-methyltryptophan (1-MT) were used to inhibite IDO1 expression. We observed the induction of IL-1β and IL-6 expression in rats with chronic TLE, which further induced the upregulation of IDO1 expression in the hippocampus. The upregulation of IDO1 subsequently increased the kynurenine/tryptophan ratio and decreased the serotonin/tryptophan ratio in the hippocampus, which contributed to epilepsy-associated depressive-like behavior. The blockade of IDO1 activation prevented the development of depressive-like behavior but failed to influence spontaneous seizures. This effect was achieved either indirectly, through the anti-inflammatory tetracycline derivative minocycline, or directly, through the IDO antagonist 1-MT, which normalizes kynurenine/tryptophan and serotonin/tryptophan ratios. Brain IDO1 activity plays a key role in epileptic rats with epilepsy-associated depressive-like behavior.

Journal ArticleDOI
TL;DR: It is shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism, which suggests an involvement of 5- HT7 receptors in ASD.
Abstract: Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD.

Journal ArticleDOI
TL;DR: Cimbi-36 is described as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain.
Abstract: [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain.

Journal ArticleDOI
TL;DR: It is speculated that enhanced TRP availability during re-feeding, as a result of the increase in the TRP/LNAA ratio, could restore serotonin neurotransmission and lead to a decrease in depressive symptoms.

Journal ArticleDOI
TL;DR: The incidence of arrhythmic contractions caused by norepinephrine, epinephrine, serotonin, and forskolin in atrial trabeculae from patients with normal sinoatrial rhythm and patients with AF was compared.
Abstract: Atrial fibrillation (AF) is the most common heart rhythm disorder. Transient postoperative AF can be elicited by high sympathetic nervous system activity. Catecholamines and serotonin cause arrhythmias in atrial trabeculae from patients with sinus rhythm (SR), but whether these arrhythmias occur in patients with chronic AF is unknown. We compared the incidence of arrhythmic contractions caused by norepinephrine, epinephrine, serotonin, and forskolin in atrial trabeculae from patients with SR and patients with AF. In the patients with AF, arrhythmias were markedly reduced for the agonists and abolished for forskolin, whereas maximum inotropic responses were markedly blunted only for serotonin. Serotonin and forskolin produced spontaneous diastolic Ca2+ releases in atrial myocytes from the patients with SR that were abolished or reduced in myocytes from the patients with AF. For matching L-type Ca2+-current (ICa,L) responses, serotonin required and produced ∼100-fold less cAMP/PKA at the Ca2+ channel domain compared with the catecholamines and forskolin. Norepinephrine-evoked ICa,L responses were decreased by inhibition of Ca2+/calmodulin-dependent kinase II (CaMKII) in myocytes from patients with SR, but not in those from patients with AF. Agonist-evoked phosphorylation by CaMKII at phospholamban (Thr-17), but not of ryanodine2 (Ser-2814), was reduced in trabeculae from patients with AF. The decreased CaMKII activity may contribute to the blunting of agonist-evoked arrhythmias in the atrial myocardium of patients with AF.

Journal ArticleDOI
TL;DR: Results suggest that AMPARs and α 4 β 2-nAChRs in the DRN play a key role in the ketamine-induced 5-HT release in the prefrontal cortex.
Abstract: Several lines of evidence indicate that ketamine has a rapid antidepressant-like effect in rodents and humans, but underlying mechanisms are unclear. In the present study, we investigated the effect of ketamine on serotonin (5-HT) release in the rat prefrontal cortex by in vivo microdialysis. A subcutaneous administration of ketamine (5 and 25 mg/kg) significantly increased the prefrontal 5-HT level in a dose-dependent manner, which was attenuated by local injection of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonists into the dorsal raphe nucleus (DRN). Direct stimulation of AMPARs in the DRN significantly increased prefrontal 5-HT level, while intra-DRN injection of ketamine (36.5 nmol) had no effect. Furthermore, intra-DRN injection of an α 4 β 2-nicotinic acetylcholine receptor (nAChR) antagonist, dihydro-β-erythroidine (10 nmol), significantly attenuated the subcutaneous ketamine-induced increase in prefrontal 5-HT levels. These results suggest that AMPARs and α 4 β 2-nAChRs in the DRN play a key role in the ketamine-induced 5-HT release in the prefrontal cortex.

Journal ArticleDOI
25 Sep 2014
TL;DR: This brief review will focus on the metabolism, biological role and mode-of-action of serotonin in insects, and comparisons are made with the vertebrate serotonergic system.
Abstract: Serotonin is an ancient monoamine neurotransmitter, biochemically derived from tryptophan. It is most abundant in the gastrointestinal tract, but is also present throughout the rest of the body of animals and can even be found in plants and fungi. Serotonin is especially famous for its contributions to feelings of well-being and happiness. More specifically it is involved in learning and memory processes and is hence crucial for certain behaviors throughout the animal kingdom. This brief review will focus on the metabolism, biological role and mode-of-action of serotonin in insects. First, some general aspects of biosynthesis and break-down of serotonin in insects will be discussed, followed by an overview of the functions of serotonin, serotonin receptors and their pharmacology. Throughout this review comparisons are made with the vertebrate serotonergic system. Last but not least, possible applications of pharmacological adjustments of serotonin signaling in insects are discussed.

Journal ArticleDOI
TL;DR: A positron emission tomography study on non-human primates revealed that alterations in the serotonergic neurotransmission, particularly upregulation of postsynaptic 5-HT1B receptors in the nucleus accumbens and ventral pallidum may be critically involved in the antidepressant action of ketamine.
Abstract: Ketamine is a unique anesthetic reagent known to produce various psychotic symptoms. Ketamine has recently been reported to elicit a long-lasting antidepressant effect in patients with major depression. Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism has not been fully elucidated. To understand the involvement of the brain serotonergic system in the actions of ketamine, we performed a positron emission tomography (PET) study on non-human primates. Four rhesus monkeys underwent PET studies with two serotonin (5-HT)-related PET radioligands, [11C]AZ10419369 and [11C]DASB, which are highly selective for the 5-HT1B receptor and serotonin transporter (SERT), respectively. Voxel-based analysis using standardized brain images revealed that ketamine administration significantly increased 5-HT1B receptor binding in the nucleus accumbens and ventral pallidum, whereas it significantly reduced SERT binding in these brain regions. Fenfluramine, a 5-HT releaser, significantly decreased 5-HT1B receptor binding, but no additional effect was observed when it was administered with ketamine. Furthermore, pretreatment with 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), a potent antagonist of the glutamate α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor, blocked the action of ketamine on the 5-HT1B receptor but not SERT binding. This indicates the involvement of AMPA receptor activation in ketamine-induced alterations of 5-HT1B receptor binding. Because NBQX is known to block the antidepressant effect of ketamine in rodents, alterations in the serotonergic neurotransmission, particularly upregulation of postsynaptic 5-HT1B receptors in the nucleus accumbens and ventral pallidum may be critically involved in the antidepressant action of ketamine.

Journal ArticleDOI
TL;DR: It is proposed that TRD may not represent a simple serotonin deficit state but rather an excess of midbrain peri-raphe serotonin and subsequent deficit at key fronto-limbic projection sites, with ultimate compromise in serotonin-mediated neuroplasticity.
Abstract: First-line treatment of major depression includes administration of a selective serotonin reuptake inhibitor (SSRI), yet studies suggest that remission rates following two trials of an SSRI are <50% The authors examine the putative biological substrates underlying "treatment resistant depression (TRD)" with the goal of elucidating novel rationales to treat TRD We look at relevant articles from the preclinical and clinical literature combined with clinical exposure to TRD patients A major focus was to outline pathophysiological mechanisms whereby the serotonin system becomes impervious to the desired enhancement of serotonin neurotransmission by SSRIs A complementary focus was to dissect neurotransmitter systems, which serve to inhibit the dorsal raphe We propose, based on a body of translational studies, TRD may not represent a simple serotonin deficit state but rather an excess of midbrain peri-raphe serotonin and subsequent deficit at key fronto-limbic projection sites, with ultimate compromise in serotonin-mediated neuroplasticity Glutamate, serotonin, noradrenaline, and histamine are activated by stress and exert an inhibitory effect on serotonin outflow, in part by "flooding" 5-HT1A autoreceptors by serotonin itself Certain factors putatively exacerbate this scenario - presence of the short arm of the serotonin transporter gene, early-life adversity and comorbid bipolar disorder - each of which has been associated with SSRI-treatment resistance By utilizing an incremental approach, we provide a system for treating the TRD patient based on a strategy of rescuing serotonin neurotransmission from a state of SSRI-induced dorsal raphe stasis This calls for "stacked" interventions, with an SSRI base, targeting, if necessary, the glutamatergic, serotonergic, noradrenergic, and histaminergic systems, thereby successively eliminating the inhibitory effects each are capable of exerting on serotonin neurons Future studies are recommended to test this biologically based approach for treatment of TRD

Journal ArticleDOI
TL;DR: This review shows that sexual behavior is mainly inhibited by antidepressants that increase serotonin neurotransmission via blockade of serotonin transporters, while those that mainly increase the levels of dopamine and noradrenaline are devoid of sexual side effects.
Abstract: Antidepressant-induced sexual dysfunction adversely affects the quality of life of antidepressant users and reduces compliance with treatment. Animal models provide an instructive approach for examining potential sexual side effects of novel drugs. This review discusses the stability and reproducibility of our standardized test procedure that assesses the acute, subchronic and chronic effects of psychoactive compounds in a 30 minute mating test. In addition, we present an overview of the effects of several different (putative) antidepressants on male rat sexual behavior, as tested in our standardized test procedure. By comparing the effects of these mechanistically distinct antidepressants (paroxetine, venlafaxine, bupropion, buspirone, DOV 216,303 and S32006), this review discusses the putative mechanism underlying sexual side effects of antidepressants and their normalization. This review shows that sexual behavior is mainly inhibited by antidepressants that increase serotonin neurotransmission via blockade of serotonin transporters, while those that mainly increase the levels of dopamine and noradrenaline are devoid of sexual side effects. Those sexual disturbances cannot be normalized by simultaneously increasing noradrenaline neurotransmission, but are normalized by increasing both noradrenaline and dopamine neurotransmission. Therefore, it is hypothesized that the sexual side effects of selective serotonin reuptake inhibitors may be mediated by their inhibitory effects on dopamine signaling in sex brain circuits. Clinical development of novel antidepressants should therefore focus on compounds that simultaneously increase both serotonin and dopamine signaling.