scispace - formally typeset
Search or ask a question

Showing papers on "Sterol published in 2020"


Journal ArticleDOI
TL;DR: This Review discusses the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated and how these pathways function in a concerted manner to maintain cholesterol homeostasis.
Abstract: Cholesterol homeostasis is vital for proper cellular and systemic functions. Disturbed cholesterol balance underlies not only cardiovascular disease but also an increasing number of other diseases such as neurodegenerative diseases and cancers. The cellular cholesterol level reflects the dynamic balance between biosynthesis, uptake, export and esterification — a process in which cholesterol is converted to neutral cholesteryl esters either for storage in lipid droplets or for secretion as constituents of lipoproteins. In this Review, we discuss the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated. The key factors governing these pathways and the major mechanisms by which they respond to varying sterol levels are described. Finally, we discuss how these pathways function in a concerted manner to maintain cholesterol homeostasis. Cholesterol is an important structural component of all animal cell membranes that functions in various processes, including membrane dynamics and cell signalling, and is also a precursor of other molecules. Deregulation of cholesterol metabolism — biosynthesis, dietary absorption and cellular uptake, storage and efflux — is linked to many diseases, including cardiovascular and genetic diseases, and cancer. A better understanding of cholesterol metabolism offers the possibility to control systemic cholesterol levels to improve human health.

712 citations


Journal ArticleDOI
15 Jul 2020-Genes
TL;DR: The sterol biosynthesis, transport and detoxification systems of S. cerevisiae are summarized, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency.
Abstract: Ergosterol is an essential component of fungal cell membranes that determines the fluidity, permeability and activity of membrane-associated proteins. Ergosterol biosynthesis is a complex and highly energy-consuming pathway that involves the participation of many enzymes. Deficiencies in sterol biosynthesis cause pleiotropic defects that limit cellular proliferation and adaptation to stress. Thereby, fungal ergosterol levels are tightly controlled by the bioavailability of particular metabolites (e.g., sterols, oxygen and iron) and environmental conditions. The regulation of ergosterol synthesis is achieved by overlapping mechanisms that include transcriptional expression, feedback inhibition of enzymes and changes in their subcellular localization. In the budding yeast Saccharomyces cerevisiae, the sterol regulatory element (SRE)-binding proteins Upc2 and Ecm22, the heme-binding protein Hap1 and the repressor factors Rox1 and Mot3 coordinate ergosterol biosynthesis (ERG) gene expression. Here, we summarize the sterol biosynthesis, transport and detoxification systems of S. cerevisiae, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency. Because of the large number of ERG genes and the crosstalk between different environmental signals and pathways, many aspects of ergosterol regulation are still unknown. The study of sterol metabolism and its regulation is highly relevant due to its wide applications in antifungal treatments, as well as in food and pharmaceutical industries.

163 citations


Journal ArticleDOI
TL;DR: Paired metagenomics and metabolomics data from existing cohorts with biochemical knowledge and experimentation are integrated to predict and validate a group of microbial cholesterol dehydrogenases that contribute to coprostanol formation.

125 citations


Journal ArticleDOI
TL;DR: The aim of this review was to discuss the most representative trends in recent studies regarding the role of sterols in plant defense reactions to environmental factors, such as UV radiation, cold and drought stress.
Abstract: Sterols are integral components of the membrane lipid bilayer and they are involved in many processes occurring in plants, ranging from regulation of growth and development to stress resistance. Maintenance of membrane homeostasis represents one of the principal functions of sterols in plant cells. Plant cell membranes are important sites of perception of environmental abiotic factors, therefore, it can be surmised that sterols may play an important role in the plant stress response. The aim of this review was to discuss the most representative trends in recent studies regarding the role of sterols in plant defense reactions to environmental factors, such as UV radiation, cold and drought stress. Some correlations were observed between changes in the sterol profile, referring to the ratios of individual compounds (including 24-methyl/ethyl sterols and sitosterol/stigmasterol) as well as the relative proportions of conjugated sterols (ASGs, SGs and SEs) and the nature of the stress response. Diversity of sterols and their conjugated forms may allow sessile plants to adapt to environmental stress conditions.

74 citations


Journal ArticleDOI
TL;DR: The main regulatory pathways and mechanisms of cholesterol metabolism are described and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis are described.
Abstract: Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.

57 citations


Journal ArticleDOI
TL;DR: The review highlights comprehensively recent advances in the understanding of the BR biosynthesis, sterol precursors, and dependencies between the C27-C28 and C28-C29 pathways.
Abstract: Brassinosteroids (BRs) as a class of steroid plant hormones participate in the regulation of numerous developmental processes, including root and shoot growth, vascular differentiation, fertility, flowering, and seed germination, as well as in responding to environmental stresses. During four decades of research, the BR biosynthetic pathways have been well studied with forward- and reverse genetics approaches. The free BRs contain 27, 28, and 29 carbons within their skeletal structure: (1): 5α-cholestane or 26-nor-24α-methyl-5α-cholestane for C27-BRs; (2) 24α-methyl-5α-cholestane, 24β-methyl-5α-cholestane or 24-methylene-5α-cholestane for C28-BRs; (3) 24α-ethyl-5α-cholestane, 24(Z)-ethylidene-5α-cholestane, 25-methyl-5α-campestane or 24-methylene-25-methyl-5α-cholestane for C29-BRs, as well as different kinds and orientations of oxygenated functions in A- and B-ring. These alkyl substituents are also common structural features of sterols. BRs are derived from sterols carrying the same side chain. The C27-BRs without substituent at C-24 are biosynthesized from cholesterol. The C28-BRs carrying either an α-methyl, β-methyl, or methylene group are derived from campesterol, 24-epicampesterol or 24-methylenecholesterol, respectively. The C29-BRs with an α-ethyl group are produced from sitosterol. Furthermore, the C29 BRs carrying methylene at C-24 and an additional methyl group at C-25 are derived from 24-methylene-25-methylcholesterol. Generally, BRs are biosynthesized via cycloartenol and cycloartanol dependent pathways. Till now, more than 17 compounds were characterized as inhibitors of the BR biosynthesis. For nine of the inhibitors (e.g., brassinazole and YCZ-18) a specific target reaction within the BR biosynthetic pathway has been identified. Therefore, the review highlights comprehensively recent advances in our understanding of the BR biosynthesis, sterol precursors, and dependencies between the C27-C28 and C28-C29 pathways.

54 citations


Journal ArticleDOI
13 May 2020-Nature
TL;DR: The structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACat1 inhibitors to treat related diseases.
Abstract: Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)1. The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis2,3. ACAT1 has also been implicated in Alzheimer's disease4, atherosclerosis5 and cancers6. Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe7, an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity8. Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.

50 citations


Journal ArticleDOI
TL;DR: The spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain are demonstrated.
Abstract: Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.

47 citations


Journal ArticleDOI
TL;DR: Cryo-EM structures of human SOAT1 are reported which reveal the binding site of the competitive inhibitor CI-976 and pave the way for future mechanistic study and rational drug design targeting hSOAT1 and other mammalian MBOAT family members.
Abstract: Sterol O-acyltransferase 1 (SOAT1) is an endoplasmic reticulum (ER) resident, multi-transmembrane enzyme that belongs to the membrane-bound O-acyltransferase (MBOAT) family. It catalyzes the esterification of cholesterol to generate cholesteryl esters for cholesterol storage. SOAT1 is a target to treat several human diseases. However, its structure and mechanism remain elusive since its discovery. Here, we report the structure of human SOAT1 (hSOAT1) determined by cryo-EM. hSOAT1 is a tetramer consisted of a dimer of dimer. The structure of hSOAT1 dimer at 3.5 A resolution reveals that a small molecule inhibitor CI-976 binds inside the catalytic chamber and blocks the accessibility of the active site residues H460, N421 and W420. Our results pave the way for future mechanistic study and rational drug design targeting hSOAT1 and other mammalian MBOAT family members. Sterol O-acyltransferase 1 (SOAT1, also named ACAT1) is an endoplasmic reticulum resident enzyme which catalyzes the esterification of cholesterol to generate cholesteryl esters. Here, authors report cryo-EM structures of human SOAT1 which reveal the binding site of the competitive inhibitor CI-976.

46 citations


Journal ArticleDOI
TL;DR: Results indicated that the supplementation of caffeic acid, ferulic acid and coumaric acid boosted the antioxidant activity in rats and promoted the excretion of neutral sterol and acidic sterol as the overall potential of the antioxidant system was significantly enhanced.

44 citations


Journal ArticleDOI
TL;DR: Treatment of mice with the mechanism-based choline TMA lyase inhibitor, iodomethylcholine, increased fecal neutral sterol loss in the form of coprostanol, a bacteria metabolite of cholesterol and suggested that the gut microbiota-driven TMAO pathway is closely linked to both microbe and host sterol and bile acid metabolism.
Abstract: The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has recently been linked to cardiovascular disease (CVD) pathogenesis, prompting the development of therapeutic strategies to reduce TMAO. Previous work has shown that experimental alteration of circulating TMAO levels via dietary alterations or inhibition of the host TMAO producing enzyme flavin containing monooxygenase 3 (FMO3) is associated with reorganization of host cholesterol and bile acid metabolism in mice. In this work, we set out to understand whether recently developed nonlethal gut microbe-targeting small molecule choline trimethylamine (TMA) lyase inhibitors also alter host cholesterol and bile acid metabolism. Treatment of mice with the mechanism-based choline TMA lyase inhibitor, iodomethylcholine (IMC), increased fecal neutral sterol loss in the form of coprostanol, a bacteria metabolite of cholesterol. In parallel, IMC treatment resulted in marked reductions in the intestinal sterol transporter Niemann-pick C1-like 1 (NPC1L1) and reorganization of the gut microbial community, primarily reversing choline supplemented diet-induced changes. IMC also prevented diet-driven hepatic cholesterol accumulation, causing both upregulation of the host hepatic bile acid synthetic enzyme CYP7A1 and altering the expression of hepatic genes critical for bile acid feedback regulation. These studies suggest that the gut microbiota-driven TMAO pathway is closely linked to both microbe and host sterol and bile acid metabolism. Collectively, as gut microbe-targeting choline TMA lyase inhibitors move through the drug discovery pipeline from preclinical models to human studies, it will be important to understand how these drugs impact both microbe and host cholesterol and bile acid metabolism.NEW & NOTEWORTHY The gut microbe-dependent metabolite trimethylamine-N-oxide (TMAO) has been strongly associated with cardiovascular mortality, prompting drug discovery efforts to identify points of therapeutic intervention within the microbe host TMAO pathway. Recently, mechanism-based small molecule inhibitors of the major bacterial trimethylamine (TMA) lyase enzymes have been developed, and these drugs show efficacy as anti-atherothrombotic agents. The novel findings of this study are that small molecule TMA lyase inhibition results in beneficial reorganization of host cholesterol and bile acid metabolism. This study confirms previous observations that the gut microbial TMAO pathway is intimately linked to host cholesterol and bile acid metabolism and provides further rationale for the development of small molecule choline TMA lyase inhibitors for the treatment of cardiometabolic disorders.

Journal ArticleDOI
TL;DR: It is suggested that future studies focus on the genetic mechanism of sterol metabolism and reverse transportation, characterizing sterol distribution and function at the cellular level, the role of bacterial symbionts in sterol metabolic, and interrupting sterol trafficking for pest control.
Abstract: Insects, like all eukaryotes, require sterols for structural and metabolic purposes. However, insects, like all arthropods, cannot make sterols. Cholesterol is the dominant tissue sterol for most insects; insect herbivores produce cholesterol by metabolizing phytosterols, but not always with high efficiency. Many insects grow on a mixed-sterol diet, but this ability varies depending on the types and ratio of dietary sterols. Dietary sterol uptake, transport, and metabolism are regulated by several proteins and processes that are relatively conserved across eukaryotes. Sterol requirements also impact insect ecology and behavior. There is potential to exploit insect sterol requirements to (a) control insect pests in agricultural systems and (b) better understand sterol biology, including in humans. We suggest that future studies focus on the genetic mechanism of sterol metabolism and reverse transportation, characterizing sterol distribution and function at the cellular level, the role of bacterial symbionts in sterol metabolism, and interrupting sterol trafficking for pest control.

Journal ArticleDOI
04 Jul 2020
TL;DR: By measuring lipid levels with mass spectrometry, this work confirms the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens and observes increased levels of digalactosylmonoacylglycerols and monogalacto-monosyldiacyl glycerols.
Abstract: In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.

Journal ArticleDOI
TL;DR: Investigation of the effect of ergosterol peroxide on the inhibition of triglyceride synthesis at protein and mRNA levels and differentiation of 3T3-L1 adipocytes found it to be a possibile prophylactic and therapeutic agent for obesity and related metabolic diseases.
Abstract: Ergosterol peroxide is a natural compound of the steroid family found in many fungi, and it possesses antioxidant, anti-inflammatory, anticancer and antiviral activities. The anti-obesity activity of several edible and medicinal mushrooms has been reported, but the effect of mushroom-derived ergosterol peroxide on obesity has not been studied. Therefore, we analyzed the effect of ergosterol peroxide on the inhibition of triglyceride synthesis at protein and mRNA levels and differentiation of 3T3-L1 adipocytes. Ergosterol peroxide inhibited lipid droplet synthesis of differentiated 3T3-L1 cells, expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAT/enhancer-binding protein alpha (C/EBPα), the major transcription factors of differentiation, and also the expression of sterol regulatory element-binding protein-1c (SREBP-1c), which promotes the activity of PPARγ, resulting in inhibition of differentiation. It further inhibited the expression of fatty acid synthase (FAS), fatty acid translocase (FAT), and acetyl-coenzyme A carboxylase (ACC), which are lipogenic factors. In addition, it inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) involved in cell proliferation and activation of early differentiation transcription factors in the mitotic clonal expansion (MCE) stage. As a result, ergosterol peroxide significantly inhibited the synthesis of triglycerides and differentiation of 3T3-L1 cells, and is, therefore, a possibile prophylactic and therapeutic agent for obesity and related metabolic diseases.

Journal ArticleDOI
01 Jan 2020-Yeast
TL;DR: Wide‐ranging phenotypes of viable Saccharomyces cerevisiae strains with altered sterol content are reviewed and the implications of these for yeast as microbial cell factories are discussed.
Abstract: Yeast strains have been used extensively as robust microbial cell factories for the production of bulk and fine chemicals, including biofuels (bioethanol), complex pharmaceuticals (antimalarial drug artemisinin and opioid pain killers), flavours, and fragrances (vanillin, nootkatone, and resveratrol). In many cases, it is of benefit to suppress or modify ergosterol biosynthesis during strain engineering, for example, to increase thermotolerance or to increase metabolic flux through an alternate pathway. However, the impact of modifying ergosterol biosynthesis on engineered strains is discussed sparsely in literature, and little attention has been paid to the implications of these modifications on the general health and well-being of yeast. Importantly, yeast with modified sterol content exhibit a wide range of phenotypes, including altered organization and dynamics of plasma membrane, altered susceptibility to chemical treatment, increased tolerance to high temperatures, and reduced tolerance to other stresses such as high ethanol, salt, and solute concentrations. Here, we review the wide-ranging phenotypes of viable Saccharomyces cerevisiae strains with altered sterol content and discuss the implications of these for yeast as microbial cell factories.

Journal ArticleDOI
TL;DR: Investigating the PM pool of accessible cholesterol in cholesterol-loaded fibroblasts with a knockdown of Aster-A and in mouse macrophages from Aster-B and Aster-a/B-deficient mice revealed expansion of the accessible cholesterol pool in cells lacking Aster expression, and revealed that the Aster-mediated nonvesicular cholesterol transport pathway controls levels ofaccessible cholesterol in the PM, as well as the activity of the SREBP pathway.
Abstract: Recent studies have demonstrated the existence of a discrete pool of cholesterol in the plasma membranes (PM) of mammalian cells-referred to as the accessible cholesterol pool-that can be detected by the binding of modified versions of bacterial cytolysins (e.g., anthrolysin O). When the amount of accessible cholesterol in the PM exceeds a threshold level, the excess cholesterol moves to the endoplasmic reticulum (ER), where it regulates the SREBP2 pathway and undergoes esterification. We reported previously that the Aster/Gramd1 family of sterol transporters mediates nonvesicular movement of cholesterol from the PM to the ER in multiple mammalian cell types. Here, we investigated the PM pool of accessible cholesterol in cholesterol-loaded fibroblasts with a knockdown of Aster-A and in mouse macrophages from Aster-B and Aster-A/B-deficient mice. Nanoscale secondary ion mass spectrometry (NanoSIMS) analyses revealed expansion of the accessible cholesterol pool in cells lacking Aster expression. The increased accessible cholesterol pool in the PM was accompanied by reduced cholesterol movement to the ER, evidenced by increased expression of SREBP2-regulated genes. Cosedimentation experiments with liposomes revealed that the Aster-B GRAM domain binds to membranes in a cholesterol concentration-dependent manner and that the binding is facilitated by the presence of phosphatidylserine. These studies revealed that the Aster-mediated nonvesicular cholesterol transport pathway controls levels of accessible cholesterol in the PM, as well as the activity of the SREBP pathway.

Journal ArticleDOI
TL;DR: In this paper, a feedback mechanism was proposed to regulate sterol equilibrium underlying sterols metabolism, which will attain higher phytosterols production in combination with gene-modification.

Journal ArticleDOI
TL;DR: A practical and highly sensitive GC method to measure non-cholesterol sterol levels and gender-segregated reference intervals of sitosterol, campesterol, and lathosterol in Japanese healthy subjects is demonstrated.
Abstract: Aims The present study was conducted to establish a practical method for measuring non-cholesterol sterols and reference intervals of serum levels. Methods Healthy subjects (109 men and 151 women), four patients with sitosterolemia, and 10 heterozygous mutation carriers of ABCG5/ABCG8 genes were investigated. Then, three non-cholesterol sterols (sitosterol, campesterol, and lathosterol) of fasting serum samples were measured via a practical and highly sensitive gas chromatography (GC) method with 0.2 µg/mL as the lower limit of quantification. The coefficient of variation (CV) values for within-run reproducibility were 3.06%, 1.89%, and 1.77% for lathosterol, campesterol, and sitosterol, respectively. The CV values for between-run reproducibility were 2.81%, 2.06%, and 2.10% for lathosterol, campesterol, and sitosterol, respectively. Results The serum levels of sitosterol and campesterol were significantly higher in women than in men, whereas the serum levels of lathosterol were significantly higher in men than in women. Because of these gender difference, the determination of reference intervals of the three sterol values was performed by considering gender. The reference intervals of sitosterol, campesterol, and lathosterol were 0.99-3.88, 2.14-7.43, and 0.77-3.60 µg/mL in men and 1.03-4.45, 2.19-8.34, and 0.64-2.78 µg/mL in women, respectively. The serum levels of sitosterol and campesterol were higher in patients with sitosterolemia (94.3±47.3 and 66.3±36.6 µg/mL, respectively) than in healthy subjects. Conclusion These results demonstrate a practical and highly sensitive GC method to measure non-cholesterol sterol levels and gender-segregated reference intervals of sitosterol, campesterol, and lathosterol in Japanese healthy subjects.

Journal ArticleDOI
TL;DR: Stable isotope labeling is used to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells to support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.

Journal ArticleDOI
TL;DR: This work establishes the genetically encoded fluorescent sensor D4H to track sterol-rich membranes in yeast cells and shows that internalization is independent of canonical vesicle trafficking and instead depends on the sterol transfer protein Ltc1.
Abstract: Sterols are crucial components of biological membranes, which are synthetized in the ER and accumulate in the plasma membrane (PM). Here, by applying a genetically encoded sterol biosensor (D4H), we visualize a sterol flow between PM and endosomes in the fission yeast Schizosaccharomyces pombe. Using time-lapse and correlative light-electron microscopy, we found that inhibition of Arp2/3-dependent F-actin assembly promotes the reversible relocalization of D4H from the PM to internal sterol-rich compartments (STRIC) labeled by synaptobrevin Syb1. Retrograde sterol internalization to STRIC is independent of endocytosis or an intact Golgi, but depends on Ltc1, a LAM/StARkin-family protein localized to ER-PM contact sites. The PM in ltc1Δ cells over-accumulates sterols and upon Arp2/3 inhibition forms extended ER-interacting invaginations, indicating that sterol transfer contributes to PM size homeostasis. Anterograde sterol movement from STRIC is independent of canonical vesicular trafficking but requires Arp2/3, suggesting a novel role for this complex. Thus, transfer routes orthogonal to vesicular trafficking govern the flow of sterols in the cell.

Journal ArticleDOI
TL;DR: The enrichment of phytosterols over yeast sterols in wild-living flies at low temperatures is consistent with switching from yeast to plant diet and corroborates the concomitantly increased unsaturation of their membrane lipids.

Journal ArticleDOI
TL;DR: It is observed that T0901317 robustly promoted cholesterol elimination and acted as a strong LXR agonist, and stigmasterol promoted transintestinal cholesterol secretion through an LXR-independent pathway.
Abstract: Despite advances in healthcare, cardiovascular disease (CVD) remains the leading cause of death in the United States. Elevated levels of plasma cholesterol are highly predictive of CVD and stroke and are the principal driver of atherosclerosis. Unfortunately, current cholesterol lowering agents, such as statins, are not known to reverse atherosclerotic disease once it has been established. In preclinical models, agonists of nuclear receptor, LXR, have been shown to reduce and reverse atherosclerosis. Phytosterols are bioactive non-cholesterol sterols that act as LXR agonists and regulate cholesterol metabolism and transport. We hypothesized that stigmasterol would act as an LXR agonist and alter intestinal cholesterol secretion to promote cholesterol elimination. Mice were fed a control diet, or a diet supplemented with stigmasterol (0.3% w/w) or T0901317 (0.015% w/w), a known LXR agonist. In this experiment we analyzed the sterol content of bile, intestinal perfusate, plasma, and feces. Additionally, the liver and small intestine were analyzed for relative levels of transcripts known to be regulated by LXR. We observed that T0901317 robustly promoted cholesterol elimination and acted as a strong LXR agonist. Stigmasterol promoted transintestinal cholesterol secretion through an LXR-independent pathway.

Journal ArticleDOI
TL;DR: This work summarizes current evidence on the metabolic and immune implications of sterol regulatory element‐binding protein dysregulation in Huntington's disease, highlighting the potential use of drugs that modulate these alterations.
Abstract: Huntington's disease is an autosomal-dominant, neurodegenerative disorder caused by a CAG repeat expansion in exon-1 of the huntingtin gene. Alterations in cholesterol metabolism and distribution have been reported in Huntington's disease, including abnormal interactions between mutant huntingtin and sterol regulatory element-binding proteins, decreased levels of apolipoprotein E/cholesterol/low-density lipoprotein receptor complexes, and alterations in the synthesis of ATP-binding cassette transporter A1. Plasma levels of 24S-hydroxycholestrol, a key intermediary in cholesterol metabolism and a possible marker in neurodegenerative diseases, decreased proportionally to the degree of caudate nucleus atrophy. The interaction of mutant huntingtin with sterol regulatory element-binding proteins is of particular interest given that sterol regulatory element-binding proteins play a dual role: They take part in lipid and cholesterol metabolism, but also in the inflammatory response that induces immune cell migration as well as toxic effects, particularly in astrocytes. This work summarizes current evidence on the metabolic and immune implications of sterol regulatory element-binding protein dysregulation in Huntington's disease, highlighting the potential use of drugs that modulate these alterations. © 2020 International Parkinson and Movement Disorder Society.

Journal ArticleDOI
TL;DR: The results demonstrate that Erg6 is crucial for growth at high temperature and virulence, likely due to its effects on C. neoformans membrane integrity and dynamics, and suggests novel approaches to treatment in human fungal infections.

Journal ArticleDOI
TL;DR: This is the first report of the existence of β- GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain and in vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-galChol.

Journal ArticleDOI
TL;DR: It is shown that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.
Abstract: Here, biophysical properties of membranes enriched in three metabolically related sterols are analyzed both in vitro and in vivo. Unlike cholesterol and ergosterol, the common metabolic precursor zymosterol is unable to induce the formation of a liquid ordered (lo) phase in model lipid membranes and can easily accommodate in a gel phase. As a result, zymosterol has a marginal ability to modulate the passive membrane permeability of lipid vesicles with different compositions, contrary to cholesterol and ergosterol. Using fluorescence-lifetime imaging microscopy (FLIM) of an aminostyiryl dye in living mammalian and yeast cells we established a close parallel between sterol-dependent membrane biophysical properties in vivo and in vitro. This approach unraveled fundamental differences in yeast and mammalian plasma membrane organization. It is often accepted that in eukaryotes areas that are sterol-enriched are also rich in sphingolipids, constituting highly ordered membrane regions. Our results support that while cholesterol is able to interact with saturated lipids, ergosterol seems to interact preferentially with monounsaturated phosphatidylcholines. Taken together, we show that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.

Journal ArticleDOI
TL;DR: The first elucidation of the complete biosynthesis of sterols in the lineage is reported, with a good level of similarity between the sterol biosynthetic genes of S. marinoi and C. cryptica with those in the genomes of the other diatoms sequenced so far.
Abstract: Diatoms are ubiquitous microalgae that have developed remarkable metabolic plasticity and gene diversification. Here we report the first elucidation of the complete biosynthesis of sterols in the lineage. The study has been carried out on the bloom-forming species Skeletonema marinoi and Cyclotella cryptica that synthesise an ensemble of sterols with chemotypes of animals (cholesterol and desmosterol), plants (dihydrobrassicasterol and 24-methylene cholesterol), algae (fucosterol) and marine invertebrates (clionasterol). In both species, sterols derive from mevalonate through cyclization of squalene to cycloartenol by cycloartenol synthase. The pathway anticipates synthesis of cholesterol by enzymes of the phytosterol route in plants, as recently reported in Solanaceae. Major divergences stem from reduction of Δ24(28) and Δ24(25) double bonds which, in diatoms, are apparently dependent on sterol reductases of fungi, algae and animals. Phylogenetic comparison revealed a good level of similarity between the sterol biosynthetic genes of S. marinoi and C. cryptica with those in the genomes of the other diatoms sequenced so far.

Journal ArticleDOI
TL;DR: On-probe derivatization coupled with noncontact nano carbon fiber ionization was proposed to conduct sensitive fatty alcohol and sterol metabolite analysis at the single-cell level and realized evidently enhanced ionization efficiency in mass spectra.
Abstract: Currently in single-cell mass spectrometry, the analysis of low-abundance cell metabolites such as fatty alcohols and sterols remains a challenge. In most research studies, single-cell samples are analyzed directly after sampling. However, this workflow may exclude many effective sample pretreatment methods such as derivatization for the improvement of detection sensitivity for specific cell metabolites in a single-cell sample. Metabolites in low abundance in a cell may not be detected. Herein on-probe derivatization coupled with noncontact nanocarbon fiber ionization is proposed for sensitive fatty alcohol and sterol metabolite analysis at the single-cell level. Fatty alcohol and sterol metabolites were rapidly quaternized by the single-cell on-probe derivatization method. The reaction products were directly ionized with no postreaction processing. Furthermore, a new ionization source for noncontact nanocarbon fiber ionization was developed to show good compatibility with dichloromethane, a low-polarity solvent used in on-probe derivatization. The quaternized fatty alcohols and sterols exhibited evidently enhanced ionization efficiency in mass spectra. In applications of the developed method, seven kinds of even-numbered-carbon fatty alcohols (C12-C22) and five kinds of sterols were detected in single L-02 and HepG2 cells. Then the L-02 and HepG2 cells were readily discriminated through principal component analysis. Additionally, a rough quantitative analysis of the detected fatty alcohols and sterols in single cells was performed. The mass intensities of fatty alcohols show a significant difference between L-02 and HepG2 cells while those of sterols remain stable.

Journal ArticleDOI
TL;DR: The results demonstrated that these ETCs target ergosterol biosynthesis pathway in C. albicans by inhibiting the lanosterol 14-α demethylase enzyme and also downregulates expression of its related gene ERG11, suggesting that these tosylates have potential to be taken to next level of antifungal drug development.
Abstract: This study is a continuation and extension of our previous study in which we synthesized seven novel eugenol tosylate congeners (ETC-1 to ETC-7) from a natural compound eugenol and checked their antifungal activity against different isolates of Candida albicans. All these ETCs showed potent antifungal activity to varying degrees. In this study, the aim is to evaluate the effect of most active compounds (ETC-5, ETC-6 and ETC-7) on ergosterol biosynthesis pathway and cellular viability in C. albicans by applying combined approach of in silico and in vitro methodologies. In silico studies were done through all atom molecular mechanics approach and free binding energy estimations, and in vitro study was done by estimating total intracellular sterol content and effect on expression of ERG11 gene. Furthermore, effect on cell viability by these compounds was also tested. Our results demonstrated that these ETCs target ergosterol biosynthesis pathway in C. albicans by inhibiting the lanosterol 14-α demethylase enzyme and also downregulates expression of its related gene ERG11. Furthermore, these ETCs exhibit potent fungicidal effect in cell viability assay, thus overall results advocating the claim that these tosylates have potential to be taken to next level of antifungal drug development.

Journal ArticleDOI
TL;DR: Overall, the findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.