scispace - formally typeset
Search or ask a question

Showing papers by "B. Brett Finlay published in 2017"


Journal ArticleDOI
TL;DR: A standardized DNA extraction method for human fecal samples is recommended, for which transferability across labs was established and which was further benchmarked using a mock community of known composition to improve comparability of human gut microbiome studies and facilitate meta-analyses.
Abstract: Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.

516 citations


Journal ArticleDOI
TL;DR: Current knowledge of the structure and function of T3SSs is summarized, which should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.
Abstract: Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.

398 citations


Journal ArticleDOI
TL;DR: This review provides an overview of the recent advances in microbiome research in relation to neuro(auto)immune and neurodegenerative conditions affecting humans, such as multiple sclerosis, neuromyelitis optica spectrum disorders, Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis.
Abstract: Almost half the cells and 1% of the unique genes found in our bodies are human, the rest are from microbes, predominantly bacteria, archaea, fungi, and viruses. These microorganisms collectively form the human microbiota, with most colonizing the gut. Recent technological advances, open access data libraries, and application of high-throughput sequencing have allowed these microbes to be identified and their contribution to neurological health to be examined. Emerging evidence links perturbations in the gut microbiota to neurological disease, including disease risk, activity, and progression. This review provides an overview of the recent advances in microbiome research in relation to neuro(auto)immune and neurodegenerative conditions affecting humans, such as multiple sclerosis, neuromyelitis optica spectrum disorders, Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Study design and terminology used in this rapidly evolving, highly multidisciplinary field are summarized to empower and engage the neurology community in this "newly discovered organ." Ann Neurol 2017;81:369-382.

359 citations


Journal ArticleDOI
TL;DR: In this paper, a case-control study nested within a birth cohort from rural Ecuador in which they identified 27 children with atopic wheeze and 70 healthy control subjects at 5 years of age.
Abstract: Background Asthma is the most prevalent chronic disease of childhood. Recently, we identified a critical window early in the life of both mice and Canadian infants during which gut microbial changes (dysbiosis) affect asthma development. Given geographic differences in human gut microbiota worldwide, we studied the effects of gut microbial dysbiosis on atopic wheeze in a population living in a distinct developing world environment. Objective We sought to determine whether microbial alterations in early infancy are associated with the development of atopic wheeze in a nonindustrialized setting. Methods We conducted a case-control study nested within a birth cohort from rural Ecuador in which we identified 27 children with atopic wheeze and 70 healthy control subjects at 5 years of age. We analyzed bacterial and eukaryotic gut microbiota in stool samples collected at 3 months of age using 16S and 18S sequencing. Bacterial metagenomes were predicted from 16S rRNA data by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States and categorized by function with Kyoto Encyclopedia of Genes and Genomes ontology. Concentrations of fecal short-chain fatty acids were determined by using gas chromatography. Results As previously observed in Canadian infants, microbial dysbiosis at 3 months of age was associated with later development of atopic wheeze. However, the dysbiosis in Ecuadorian babies involved different bacterial taxa, was more pronounced, and also involved several fungal taxa. Predicted metagenomic analysis emphasized significant dysbiosis-associated differences in genes involved in carbohydrate and taurine metabolism. Levels of the fecal short-chain fatty acids acetate and caproate were reduced and increased, respectively, in the 3-month stool samples of children who went on to have atopic wheeze. Conclusions Our findings support the importance of fungal and bacterial microbiota during the first 100 days of life on the development of atopic wheeze and provide additional support for considering modulation of the gut microbiome as a primary asthma prevention strategy.

147 citations


Journal ArticleDOI
TL;DR: The evidence relating to specific early life exposures that affect future allergy development are presented, and how these exposures may promote either tolerance or allergic sensitization is discussed.
Abstract: The incidence of allergic disease continues to rise in industrialized countries. The rapid increase in the incidence of allergic disease throughout the past half century suggests that recently altered environmental factors are driving allergy development. Accumulating evidence suggests that environmental experiences that occur during the first months of life can influence the risk of allergic sensitization. In this Review, we present the evidence relating to specific early life exposures that affect future allergy development, and discuss how these exposures may promote either tolerance or allergic sensitization.

113 citations


Journal ArticleDOI
TL;DR: IS treatment alters innate antimicrobial defenses and disrupts the gut microbiota, which leads to overgrowth of indigenous E. coli and facilitates colonization by opportunistic pathogens.
Abstract: Background Transplant recipients are treated with immunosuppressive (IS) therapies, which impact host-microbial interactions. We examined the impact of IS drugs on gut microbiota and on the expression of ileal antimicrobial peptides. Methods Mice were treated for 14 days with prednisolone, mycophenolate mofetil, tacrolimus, a combination of these 3 drugs, everolimus, or water. Feces were collected before and after treatment initiation. Ileal samples were collected after sacrifice. Fecal and ileal microbiota were analyzed by pyrosequencing of 16S rRNA genes and enumeration of selected bacteria by culture, and C-type lectins were assessed in ileal tissues by reverse transcriptase-quantitative polymerase chain reaction. Results Prednisolone disrupted fecal microbiota community structure, decreased Bacteroidetes, and increased Firmicutes in the feces. Prednisolone, tacrolimus, and mycophenolate mofetil modified fecal microbiota at the family level in each experimental replicate, but changes were not consistent between the replicates. In ileal samples, the genus Clostridium sensu stricto was dramatically reduced in the prednisolone and combined IS drug groups. These modifications corresponded to an altered ileal expression of C-type lectins Reg3γ and Reg3β, and of interleukin 22. Interestingly, the combined IS treatment enabled a commensal Escherichia coli to flourish, and dramatically increased colonization by uropathogenic E. coli strain 536. Conclusions IS treatment alters innate antimicrobial defenses and disrupts the gut microbiota, which leads to overgrowth of indigenous E. coli and facilitates colonization by opportunistic pathogens.

82 citations


Journal ArticleDOI
TL;DR: Recent findings about the immunoregulatory effect of intestinal microbiota with regards to intestinal colonization by protozoa are discussed, focusing on infections by Entamoeba histolytica, Blastocystis spp, Giardia duodenalis, Toxoplasma gondii and Cryptosporidium parvum.

63 citations


Journal ArticleDOI
TL;DR: Human epidemiological studies and experimental infections of laboratory animals both demonstrate that antibiotic treatment can alter the gut microbial community and thereby reduce colonization resistance against diarrheal pathogens.
Abstract: Background: The mammalian gut microbiota is a highly abundant and diverse microbial community that resides in the gastrointestinal tract. One major benefit that the gut microbiota provides to its host is colonization resistance—the ability to prevent colonization by foreign microbes, including diarrheal pathogens such as Clostridium difficile, Salmonella enterica serovar Typhimurium and diarrheagenic Escherichia coli. Methods: We conducted a literature review of the effects of the gut microbiota on infection by diarrheal pathogens. We used PubMed to search for relevant articles published before July 2016, as well as incorporated data from our laboratory. Results: The gut microbiota provides protection from diarrheal infections both by direct inhibition of pathogens and by indirect effects on host functions. Direct effects of the microbiota on diarrheal pathogens include competing for nutrients and producing metabolites that inhibit pathogen growth or virulence. Indirect effects of the gut microbiota include promoting maintenance of the gut mucosal barrier and stimulating innate and adaptive immunity. Conclusions: Human epidemiological studies and experimental infections of laboratory animals both demonstrate that antibiotic treatment can alter the gut microbial community and thereby reduce colonization resistance against diarrheal pathogens. Further research might lead to the development of next-generation probiotics that could be used to bolster colonization resistance and thus prevent travellers’ diarrheal. Introduction

55 citations


Journal ArticleDOI
TL;DR: It is shown that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells, which reveals a novel mechanism by which a helminths-modified metabolome promotes susceptibility to bacterial coinfection.
Abstract: Intestinal helminth infections occur predominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional 3-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial coinfection.

54 citations


Journal ArticleDOI
TL;DR: This review summarizes the current knowledge of SCV maturation and SIF biogenesis, and recent advances in the understanding of the role of SIFs inside cells.
Abstract: A common strategy among intracellular bacterial pathogens is to enter into a vacuolar environment upon host cell invasion. One such pathogen, Salmonella enterica, resides within the Salmonella-containing vacuole (SCV) inside epithelial cells and macrophages. Salmonella hijacks the host endosomal system to establish this unique intracellular replicative niche, forming a highly complex and dynamic network of Salmonella-induced filaments (SIFs). SIFs radiate outwards from the SCV upon onset of bacterial replication. SIF biogenesis is dependent on the activity of bacterial effector proteins secreted by the Salmonella-pathogenicity island-2 (SPI-2) encoded type III secretion system. While the presence of SIFs has been known for almost 25 years, their precise role during infection remains elusive. This review summarizes our current knowledge of SCV maturation and SIF biogenesis, and recent advances in our understanding of the role of SIFs inside cells.

47 citations


Journal ArticleDOI
TL;DR: How proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, including Clostridia spp.

Journal ArticleDOI
08 Mar 2017-Mbio
TL;DR: This study found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the release of translocator proteins to the secretion of effector proteins.
Abstract: The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. Importance The emergence of multidrug-resistant bacterial strains, especially those of pathogenic bacteria, has serious medical and clinical implications. At the same time, the development and approval of new antibiotics have been limited for years. Recently, antivirulence drugs have received considerable attention as a novel antibiotic strategy that specifically targets bacterial virulence rather than growth, an approach that applies milder evolutionary pressure on the bacteria to develop resistance. A highly attractive target for the development of antivirulence compounds is the type III secretion system, a specialized secretory system possessed by many Gram-negative bacterial pathogens for injecting virulence factors (effectors) into host cells. In this study, we shed light on the molecular mechanism that allows bacteria to sense their contact with the host cell and to respond with the timed secretion of effector proteins. Understanding this critical step for bacterial virulence may provide a new therapeutic strategy.

Journal ArticleDOI
TL;DR: The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration, and encourage the development of personalized medication in antibiotic therapies.
Abstract: Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies.IMPORTANCE This work provides an understanding of variability in studies where antibiotics are used to alter the gut microbiota to generate a host response. Furthermore, although providing evidence only for the one antibiotic, the study demonstrated that initial gut microbial composition is a key factor driving host response to antibiotic administration, creating a compelling argument for considering personalized medication based on individual variations in gut microbiota.

Journal ArticleDOI
TL;DR: An aromatic compound from the human gut acts as a strong inhibitor of hilA expression and of invasion of cultured host cells by Salmonella, and may represent an opportunity to develop drugs that can target these small-molecule interactions to protect us from enteric infections and other diseases.
Abstract: The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions, such as producing vitamins, aiding in maturation of the immune system, and protecting against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA, the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression and of invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule.IMPORTANCE Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occur. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect. The results from this work not only shed light on an important biological phenomenon occurring in our bodies but also may represent an opportunity to develop drugs that can target these small-molecule interactions to protect us from enteric infections and other diseases.

Journal ArticleDOI
TL;DR: Several novel series of compounds were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase, with structural features distinct from the human homologs which makes it a novel antimicrobial target.

Journal ArticleDOI
TL;DR: Considering the impact of various environmental factors on each endotype when establishing experimental outcomes in epidemiological studies could allow for increased precision when determining exposure‐outcome associations and engaging in more focused follow-up mechanistic investigations.
Abstract: Asthma is an aberrant inflammatory condition of the airways affecting approximately 1 in 10 children in affluent countries. An increasing body of evidence suggests that microbial exposures during a "critical window" of development in early life play a central role in determining future asthma susceptibility. However, like the disease itself, considerable heterogeneity exists among studies in which researchers have investigated the associations between particular microbial taxa and asthma immunology. As our understanding of asthmatic pathology evolves to enable clearer definition of asthma endotypes, it will be important to consider the impact of various environmental factors on each endotype. Given the strong evidence in support of the hypothesis that early-life microbial exposures predict later disease states such as asthma, consideration of these endotypes when establishing experimental outcomes in epidemiological studies could allow for increased precision when determining exposure-outcome associations and engaging in more focused follow-up mechanistic investigations.

Journal ArticleDOI
TL;DR: The motivation for, and overview of, the workshop, and the next steps in establishing a cross-disciplinary initiative on Brain Health and the Microbiome are provided.
Abstract: Knowledge surrounding the trillions of microbes that inhabit the human gut has bloomed exponentially in recent years, and the emerging concept of a gut-brain axis represents a major shift in how we think about neurological health. A recent workshop at the University of British Columbia, Canada brought together multi-disciplinary leaders in the field of microbiomics and brain health and aimed to serve as a springboard for future combined endeavors in these areas. This article provides the motivation for, and overview of, the workshop, and the next steps in establishing a cross-disciplinary initiative on Brain Health and the Microbiome.

Journal ArticleDOI
TL;DR: A new model of co-infection in mice now sheds light on the complex interplay between pathogens, the host and the resident gut microbiota during malnutrition.
Abstract: Childhood malnutrition is a global health issue influenced by poorly understood microbial interactions. A new model of co-infection in mice now sheds light on the complex interplay between pathogens, the host and the resident gut microbiota during malnutrition.