scispace - formally typeset
Search or ask a question

Showing papers by "Frank Baas published in 2017"


Journal ArticleDOI
TL;DR: It is shown that most neuroblastomas include two types of tumor cells with divergent gene expression profiles, and two super-enhancer-associated TF networks thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.
Abstract: Neuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown. Here we show that most neuroblastomas include two types of tumor cells with divergent gene expression profiles. Undifferentiated mesenchymal cells and committed adrenergic cells can interconvert and resemble cells from different lineage differentiation stages. ChIP-seq analysis of isogenic pairs of mesenchymal and adrenergic cells identified a distinct super-enhancer landscape and super-enhancer-associated TF network for each cell type. Expression of the mesenchymal TF PRRX1 could reprogram the super-enhancer and mRNA landscapes of adrenergic cells toward a mesenchymal state. Mesenchymal cells were more chemoresistant in vitro and were enriched in post-therapy and relapse tumors. Two super-enhancer-associated TF networks, which probably mediate lineage control in normal development, thus dominate epigenetic control of neuroblastoma and shape intratumoral heterogeneity.

322 citations


Journal ArticleDOI
TL;DR: It is concluded that mutations in ANXA11 are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the ANXA11 gene in 13 individuals. The p.D40G mutation was absent from 70,000 control whole-exome sequences. This mutation segregated with disease in two kindreds and was present in another two unrelated cases (P = 0.0102), and all mutation carriers shared a common founder haplotype. Annexin A11–positive protein aggregates were abundant in spinal cord motor neurons and hippocampal neuronal axons in an ALS patient carrying the p.D40G mutation. Transfected human embryonic kidney cells expressing ANXA11 with the p.D40G mutation and other N-terminal mutations showed altered binding to calcyclin, and the p.R235Q mutant protein formed insoluble aggregates. We conclude that mutations in ANXA11 are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis.

199 citations


Journal ArticleDOI
TL;DR: Cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause Perrault syndrome and are associated with changes in mitochondrial metabolism.
Abstract: Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A > T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit, the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.

58 citations


Journal ArticleDOI
TL;DR: The cause of a neurodegenerative syndrome linked to snRNA maturation is identified and a key factor involved in the processing of snRNA 3′ ends is uncovered.
Abstract: Jens Lykke-Andersen, Frank Baas, Joseph Gleeson and colleagues report that mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia type 7. They further show that these mutations result in the accumulation of incompletely processed small nuclear RNAs, leading to severe, early-onset neurodegeneration.

55 citations


Journal ArticleDOI
01 Feb 2017-Glia
TL;DR: It is concluded that C3d+ microglial clusters in MS are not part of an acute attack against myelinated axons, as such it is unlikely that they drive formation of new lesions but could represent a physiological mechanism to remove irreversibly damaged axons in chronic disease.
Abstract: Microglial clusters with C3d deposits are observed in the periplaque of multiple sclerosis (MS) brains and were proposed as early stage of lesion formation As such they should appear in the brain of MS donors with acute disease but thus far this has not been shown Using postmortem brain tissue from acute (n = 10) and chronic (n = 15) MS cases we investigated whether C3d+ microglial clusters are part of an acute attack against myelinated axons, which could have implications for disease pathogenesis The specificity of our findings to MS was tested in ischemic stroke cases (n = 8) with initial or advanced lesions and further analyzed in experimental traumatic brain injury (TBI, n = 26), as both conditions are primarily nondemyelinating but share essential features of neurodegeneration with MS lesions C3d+ microglial clusters were found in chronic but not acute MS They were not associated with antibody deposits or terminal complement activation They were linked to slowly expanding lesions, localized on axons with impaired transport and associated with neuronal C3 production C3d+ microglial clusters were not specific to MS as they were also found in stroke and experimental TBI We conclude that C3d+ microglial clusters in MS are not part of an acute attack against myelinated axons As such it is unlikely that they drive formation of new lesions but could represent a physiological mechanism to remove irreversibly damaged axons in chronic disease GLIA 2017;65:264-277

51 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyse whether clonal changes in the B cell receptor (BCR) repertoire can reliably predict onset of signs and symptoms of rheumatoid arthritis.
Abstract: Background The onset of seropositive rheumatoid arthritis (RA) is preceded by the presence of specific autoantibodies in the absence of synovial inflammation. Only a subset of these at-risk individuals will develop clinical disease. This impedes efforts to implement early interventions that may prevent onset of clinically manifest disease. Here we analyse whether clonal changes in the B cell receptor (BCR) repertoire can reliably predict onset of signs and symptoms. Methods In a prospective cohort study in 21 individuals at risk for RA based on the presence of autoantibodies, the BCR repertoire of paired peripheral blood and synovial tissue samples was analysed using next-generation BCR sequencing. BCR clones that were expanded beyond 0.5% of the total repertoire were labelled dominant. The relative risk (RR) for onset of arthritis was assessed using the presence of ≥5 dominant BCR clones as cut-off. Findings in peripheral blood were validated in an independent prospective cohort of 50 at-risk individuals. Based on the test cohort, individuals in the validation cohort were considered positive if peripheral blood at study entry showed ≥5 dominant BCR clones. Findings Both in the test and validation cohort, the presence of ≥5 dominant BCR clones in peripheral blood was significantly associated with arthritis development after follow-up (validation cohort RR 6.3, 95% CI 2.7 to 15, p −4 ). Even when adjusted for a recently described clinical prediction rule the association remained intact (RR 5.0, 95% CI 1.2 to 20, p=0.024). When individuals developed arthritis, dominant BCR clones disappeared from peripheral blood and appeared in synovial tissue, suggesting a direct role of these clones in disease pathogenesis. Interpretation Dominant BCR clones in peripheral blood predict onset of clinical signs and symptoms of RA in at-risk individuals with high accuracy. Our data suggest that during onset of RA these clones shift from peripheral blood to the target tissue.

42 citations


Journal ArticleDOI
TL;DR: This study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.
Abstract: Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.

37 citations


Journal ArticleDOI
TL;DR: The hypothesis that the CRB1 type autosomal recessive retinitis pigmentosa–phenotype is modulated by other factors is supported, although the clinical variability will make it harder to evaluate the effect of (upcoming) therapies for retinopathy pigmentosa.
Abstract: Purpose To examine the long-term clinical course and variability in a large pedigree segregating CRB1 type autosomal recessive retinitis pigmentosa. Methods An observational case study of 30 patients with CRB1 type autosomal recessive retinitis pigmentosa, homozygous for the CRB1 c.3122T > C; p.(Met1041Thr) mutation from a Dutch genetically isolated population in which the CRB1 gene was originally identified. The authors evaluated medical records, analyzed a questionnaire, and performed a comprehensive ophthalmic examination, including optical coherence tomography. Results Mean follow-up was 19 years (range 0-45 years, SD 15 years). With aging, patients showed progressive visual decline, deterioration of visual fields, increasing narrowing of the anterior chamber, increased prevalence of cataract, and an increase in the amount of intraretinal pigmentations. Fifty percent of patients had a visual acuity of ≤0.3 at Age 18 and of ≤0.1 at Age 35. Electroretinogram responses were severely reduced or absent already at a young age and optical coherence tomography showed increased retinal thickness with often cystoid maculopathy at young age, and thinning of the retina and disorientation of the photoreceptor layer in the late stages. The clinical course showed considerable interindividual variability, but intraindividual similarity between both eyes was the rule. Conclusion The wide and variable clinical spectrum in patients with the same CRB1 mutation supports the hypothesis that the CRB1 type autosomal recessive retinitis pigmentosa-phenotype is modulated by other factors. The clinical variability will make it harder to evaluate the effect of (upcoming) therapies for retinitis pigmentosa, although because of the intraindividual similarity between both eyes, the contralateral eye can be used as an excellent internal control.

33 citations


Journal ArticleDOI
TL;DR: The intestinal T-cell repertoire distribution in Crohn's disease is different from that in the normal gut, containing profoundly expanded T- cell clones that take up a large part of the repertoire.
Abstract: T cells are key players in the chronic intestinal inflammation that characterises Crohn's disease. Here we aim to map the intestinal T-cell receptor [TCR] repertoire in patients with Crohn's disease, using next-generation sequencing technology to examine the clonality of the T-cell compartment in relation to mucosal inflammation and response to therapy. Biopsies were taken from endoscopically inflamed and uninflamed ileum and colon of 19 patients with Crohn's disease. From this cohort, additional biopsies were taken after 8 weeks of remission induction therapy from eight responders and eight non-responders. Control biopsies from 11 patients without inflammatory bowel disease [IBD] were included. The TCRβ repertoire was analysed by next-generation sequencing of biopsy RNA. Both in Crohn's disease patients and in non-IBD controls, a broad intestinal T-cell repertoire was found, with a considerable part consisting of expanded clones. Clones in Crohn's disease were more expanded [p = 0.008], with the largest clones representing up to as much as 58% of the total repertoire. There was a substantial overlap of the repertoire between inflamed and uninflamed tissue and between ileum and colon. Following therapy, responders showed larger changes in the T-cell repertoire than non-responders, although a considerable part of the repertoire remained unchanged in both groups. The intestinal T-cell repertoire distribution in Crohn's disease is different from that in the normal gut, containing profoundly expanded T-cell clones that take up a large part of the repertoire. The T-cell repertoire is fairly stable regardless of endoscopic mucosal inflammation or response to therapy

28 citations


Journal ArticleDOI
TL;DR: A de novo missense mutation in the inositol, 1,4,5 triphosphate receptor type 1 (ITPR1) gene is reported in a patient with severe pontocerebellar hypoplasia, which further expands the spectrum of ITPR1‐related ataxias.
Abstract: We report a de novo missense mutation (c.7649T>A) in the inositol, 1,4,5 triphosphate receptor type 1 (ITPR1) gene in a patient with severe pontocerebellar hypoplasia. The mutation results in an amino acid substitution of a highly conserved isoleucine by asparagine (p. I2550N) in the transmembrane domain. Mutations and deletions of the ITPR1 gene are associated with several types of autosomal dominant spinocerebellar ataxia, varying in age of onset and severity. Patients have signs of cerebellar ataxia and at most, a mild cerebellar atrophy on MRI. In contrast, the patient we report here has profound cerebellar and pontine hypoplasia. Our finding therefore further expands the spectrum of ITPR1-related ataxias. © 2016 Wiley Periodicals, Inc.

27 citations


Journal ArticleDOI
01 Aug 2017-Brain
TL;DR: This research presents a novel and scalable approaches, called “Smart Gene Regulation,” which aims to provide real-time information about the “building blocks” of disease-causing mutations and its consequences.
Abstract: 1 Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands 2 Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria 3 Institute of Human Genetics, RWTH Aachen University, Aachen, Germany 4 Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany 5 Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands 6 Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands 7 Department of Pediatric Neurology, Academic Medical Center, Amsterdam, The Netherlands 8 Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands

Journal ArticleDOI
TL;DR: Mannose-binding lectin-associated serine protease (MASP-2) levels in cerebrospinal fluid of patients with bacterial meningitis were correlated with poor functional outcome, and adjuvant treatment with MASP- 2-specific monoclonal antibodies led to reduced complement activation and decreased disease severity.
Abstract: Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the pro-inflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. We investigated mannose-binding lectin-associated serine protease (MASP-2) levels in cerebrospinal fluid (CSF) samples derived from the diagnostic lumbar puncture, which was available for 307 of 792 pneumococcal meningitis episodes included in our prospective nationwide cohort study (39%), and the association between these levels and clinical outcome. Subsequently, we studied the role of MASP-2 in our experimental pneumococcal meningitis mouse model using Masp2 −/− mice and evaluated the potential of adjuvant treatment with MASP-2-specific monoclonal antibodies in wild-type (WT) mice. MASP-2 levels in cerebrospinal fluid of patients with bacterial meningitis were correlated with poor functional outcome. Consistent with these human data, Masp2-deficient mice with pneumococcal meningitis had lower cytokine levels and increased survival compared to WT mice. Adjuvant treatment with MASP-2-specific monoclonal antibodies led to reduced complement activation and decreased disease severity. MASP-2 contributes to poor disease outcome in human and mice with pneumococcal meningitis. MASP-2-specific monoclonal antibodies can be used to attenuate the inflammatory response in pneumococcal meningitis.

Journal ArticleDOI
TL;DR: Results indicate that adolescents carrying the G‐allele may be more vulnerable for the alcohol to hijack the reward system in the absence of frontal control to regulate craving, and implies that findings of hyperactivation in the mesolimbic structures of G-allele carriers in earlier studies might result from both genetic susceptibility and heavy drinking.
Abstract: Genetic variations in the mu-opioid receptor (OPRM1) gene have been related to high sensitivity to rewarding effects of alcohol. The current study focuses on the neural circuitry underlying this phenomenon using an alcohol versus water taste-cue reactivity paradigm in a young sample at relatively early stages of alcohol use, thus limiting the confound of variations in duration of alcohol use. Drinkers (17–21 years old) were selected on genotype carrying the AA—(n = 20) or the AG—(n = 16) variant of the A118G single nucleotide polymorphism (SNP) of the OPRM1 gene (rs1799971), and underwent functional magnetic resonance imaging (fMRI). Magnitude of the neural activity and frontostriatal functional connectivity in response to alcohol versus water were investigated. The AG-group demonstrated reduced activation in prefrontal and parietal regions, including the inferior and middle frontal gyrus, superior and inferior parietal lobule, compared with the AA-group. No activation differences were observed in the mesolimbic pathway. Connectivity from the ventral-striatum to frontal regions for alcohol > water trials was higher in the AG than the AA group. For the dorsal-striatum seed region, the AG group showed increased connectivity to non-PFC regions. These results indicate that adolescents carrying the G-allele may be more vulnerable for the alcohol to hijack the reward system in the absence of frontal control to regulate craving. This implies that findings of hyperactivation in the mesolimbic structures of G-allele carriers in earlier studies might result from both genetic susceptibility and heavy drinking.

Posted ContentDOI
10 Mar 2017-bioRxiv
TL;DR: Cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause Perrault syndrome and are associated with changes in mitochondrial metabolism.
Abstract: Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A>T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit , the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were fully rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.

Journal ArticleDOI
TL;DR: It is demonstrated that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylated capacity of LRSAM1.
Abstract: Charcot-Marie-Tooth (CMT) disease type 2 is a genetically heterogeneous group of inherited neuropathies characterized by motor and sensory deficits as a result of peripheral axonal degeneration. We recently reported a frameshift (FS) mutation in the Really Interesting New Gene finger (RING) domain of LRSAM1 (c.2121_2122dup, p.Leu708Argfs) that encodes an E3 ubiquitin ligase, as the cause of axonal-type CMT (CMT2P). However, the frequency of LRSAM1 mutations in CMT2 and the functional basis for their association with disease remains unknown. In this study, we evaluated LRSAM1 mutations in two large Dutch cohorts. In the first cohort (n = 107), we sequenced the full LRSAM1 coding exons in an unbiased fashion, and, in the second cohort (n = 468), we specifically sequenced the last, RING-encoding exon in individuals where other CMT-associated genes had been ruled out. We identified a novel LRSAM1 missense mutation (c.2120C > T, p.Pro707Leu) mapping to the RING domain. Based on our genetic analysis, the occurrence of pathogenic LRSAM1 mutations is estimated to be rare. Functional characterization of the FS, the identified missense mutation, as well as of another recently reported pathogenic missense mutation (c.2081G > A, p.Cys694Tyr), revealed that in vitro ubiquitylation activity was largely abrogated. We demonstrate that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylation capacity. In contrast, LRSAM1 dimerization and interaction with the bona fide target TSG101 were not disrupted. In conclusion, our study provides further support for the role of LRSAM1 in CMT and identifies LRSAM1-mediated ubiquitylation as a common determinant of disease-associated LRSAM1 mutations.

Journal ArticleDOI
15 May 2017-PLOS ONE
TL;DR: It is demonstrated that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients.
Abstract: Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively), with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively). In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively). The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.

Journal ArticleDOI
TL;DR: The role of PRC2 (Polycomb Repressive Complex 2), member of the polycomb group of chromatin modifying proteins (PcG) with a cell-fate conserving function in organ development, is probed for interference with the developing rhombencephalon by an epigenetic mechanism as possible cause of CBSD.
Abstract: Congenital brainstem disconnection (CBSD) is an enigmatic embryo-fetal defect presenting as (sub)total absence of a segment between mesencephalon and lower brainstem. Rostro-caudal limits of the defect vary while the basal pons is always involved and the cerebellum is globally hypoplastic. A recent update and review[1] lists 14 cases, including 3 brain autopsy studies[1-3]. Necrosis and glial- or inflammatory reactions were absent. Inferior olivary nuclei were small or absent, pontine nuclei depleted, and the cerebellar dentate nuclei dysplastic. Supra-tentorial parts were normal in size, shape and microscopic structure. Frequent associated findings were vertebral segmentation defects(4/14) and hydronephrosis(3/14). No intra-familial recurrence or consanguinity were recorded. We considered interference with the developing rhombencephalon by an epigenetic mechanism as possible cause of CBSD. We probed the role of PRC2 (Polycomb Repressive Complex 2), member of the polycomb group of chromatin modifying proteins (PcG) with a cell-fate conserving function in organ development[4-7]. PRC2 acts by promotor binding as well as by modification of histone H3 through its catalytic subunit EZH2 (Enhancer of Zeste2) that tri-methylates the free ending tail of H3 at lysine 27 to H3K27me3 (with H3K27me2 as intermediate step). H3K27me3 blocks transcription of developmental genes to consolidate the mature stage of cell lineage on completed development[7]. Advantageous use can be made of anti-H3K27me3 antibody staining of nuclear chromatin on routinely prepared autopsy tissue sections to study EZH2 activity, an application more commonly used in neoplastic studies[8], but not routinely applied in human malformations. The absence of immunoreactivity in a developmental setting is due to immaturity, as in embryonic stem cells, or to an abnormal persistence (or even reversal) to that state with loss of control over tissue specific development. A large number of genes are known to undergo maturational silencing by histone modification. For example, EZH2 stabilizes the identity of individual vertebral body segments as well as brainstem development by silencing HOX genes[9,10]. Another role for EZH2, sustaining normal pontine neuron migration from the embryonic rhombic lip to the mature site of function has been identified by rhombomere specific knockout of Ezh2 in mouse embryos[11]. This finding prompted the present study. This article is protected by copyright. All rights reserved.


Journal ArticleDOI
TL;DR: In this CMT2 family with a pseudodominant inheritance pattern DNA‐diagnostics revealed the presence of both homozygous and compound heterozygous GDAP1 mutations, which recommend including multiple family members in genetic studies on CMT families.
Abstract: We report a family in which an autosomal dominantly inherited Charcot-Marie-Tooth (CMT) disease type 2 was suspected. The affected family members (proband, sister, father, and paternal aunt) showed intrafamilial clinical variability. The proband needed walking aids since adolescence because of generalized muscle weakness. The sister showed the same symptoms although to a lesser extent. The father and paternal aunt had foot deformity and atrophy of lower legs. A homozygous GDAP1 mutation was found in the proband and in the sister. Further testing showed compound heterozygous GDAP1 mutations in the father and paternal aunt. In this CMT2 family with a pseudodominant inheritance pattern DNA-diagnostics revealed the presence of both homozygous and compound heterozygous GDAP1 mutations. We recommend including multiple family members in genetic studies on CMT families.


Journal Article
TL;DR: Exome sequencing identified 6 novel, or extremely rare, Annexin A11 mutations in 12 individuals with familial ALS, highlighting the role of defective cellular trafficking in the pathogenesis of ALS.
Abstract: Amyotrophic Lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 608 familial ALS exomes and identified 6 novel, or extremely rare, Annexin A11 mutations in 12 individuals. The novel p.D40G mutation which was absent from >60,000 exomes; segregated with disease in two kindreds, was present in two unrelated cases and all carriers shared a common haplotype. Annexin A11-positive aggregates were abundant in spinal motor neurons and hippocampal axons in a D40G patient. Transfected cells expressing p.D40G and other N-terminal mutations had altered calcyclin binding while the p.R235Q mutant formed toxic, insoluble aggregates. Annexin A11 mutations accounted for ~1.2% of familial and ~1.7% of sporadic cases. Mutations in Annexin A11 highlight the role of defective cellular trafficking in the pathogenesis of ALS. Introduction Gene hunting in rare Mendelian disorders has been transformed by exome sequencing, particularly for autosomal recessive disorders [1]. This approach is also attractive for lateonset autosomal dominant syndromes with short disease durations, such as Amyotrophic Lateral Sclerosis (ALS), in which DNA from multiple affected individuals in the same kindred is rare. ALS has a life-time risk of 1/400 and is characterized by degeneration of brain and spinal cord motor neurons resulting in progressive paralysis and death within an average of 3 years [2]. 10% of cases are familial (FALS) and a causative gene mutation can be identified in ~60% of European kindreds [3]. Mutations in the same genes account for ~10% of sporadic ALS cases reflecting incomplete penetrance. Non-synonymous mutations in SOD1, TARDBP, FUS and an intronic hexanucleotide repeat expansion in C9ORF72 account for ~20% of ALS cases and the other genes for ~1-3% [4]. Exome sequencing has identified six ALS genes where mutations segregate with disease (VCP, PFN1, MATR3 and CHCHD10) or by genetic burden analysis (TUBA4A and TBK1) [5-11]. Here we analysed FALS exomes to