scispace - formally typeset
K

Kipp Cannon

Researcher at University of Tokyo

Publications -  270
Citations -  72438

Kipp Cannon is an academic researcher from University of Tokyo. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 91, co-authored 254 publications receiving 58717 citations. Previous affiliations of Kipp Cannon include University of Toronto & University of Wisconsin–Milwaukee.

Papers
More filters
Journal ArticleDOI

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA

B. P. Abbott, +1318 more
TL;DR: In this paper, the authors present the current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves.
Journal ArticleDOI

Properties of the binary neutron star merger GW170817

B. P. Abbott, +1146 more
TL;DR: In this article, the authors improved initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data.
Journal ArticleDOI

Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog

Richard J. Abbott, +1431 more
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Journal ArticleDOI

Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

B. P. Abbott, +1218 more
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Journal ArticleDOI

Tests of General Relativity with GW170817

B. P. Abbott, +1240 more
TL;DR: In this paper, the authors place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime of a binary neutron star inspiral.