scispace - formally typeset
Search or ask a question
Institution

Bulgarian Academy of Sciences

GovernmentSofia, Bulgaria
About: Bulgarian Academy of Sciences is a government organization based out in Sofia, Bulgaria. It is known for research contribution in the topics: Catalysis & Coupling constant. The organization has 17989 authors who have published 36276 publications receiving 642820 citations. The organization is also known as: Bulgarian Academy of Sciences,簡稱:BAS & Balgarska Akademiya na Naukite.


Papers
More filters
Journal ArticleDOI
TL;DR: It is an open question whether MSCs isolated from different sources represent a single cell lineage or if cells residing in different organs are separate members of a family of MSCS.

120 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study has been conducted with the aim to investigate and evaluate thermophysical properties of technical grade paraffins appropriate for solar energy storage applications, which involved the kinetics of phase transition and latent heat of phase change, the thermal cycling stability at heating and cooling and specific heat for the temperature range of application.

120 citations

Journal ArticleDOI
TL;DR: The systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.

120 citations

Journal ArticleDOI
TL;DR: The enzyme was able to hydrolyze both soluble and insoluble emulsified substrates and was classified as a lipase, expressing some esterase activity as well, and the most advantageous method for immobilization was found to be ionic binding to DEAE Cellulose.
Abstract: Extracellular thermostable lipase produced by the thermophilic Bacillus stearothermophilus MC 7 was purified to 19.25-fold with 10.2% recovery. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was shown to be 62 500 Da. The purified enzyme expressed maximum activity at 75-80 OC and its half life was 30min at 70 OC. The K,,, and V,,,,, were calculated to be, respectively, 0.33 mM and 188 pMmin-' mg-' withp-nitrophenyl palmitate @NPP) as a substrate. Enzyme activity was inhibited by divalent ions of heavy metals, thiol and serine inhibitors, whereas calcium ion stimulated its activity. The most advantageous method for immobilization was found to be ionic binding to DEAE Cellulose. The enzyme was able to hydrolyze both soluble and insoluble emulsified substrates and was classified as a lipase, expressing some esterase activity as well. 0 2003 Elsevier Science B.V. All rights reserved.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines was investigated using the least-squares deconvolution method.
Abstract: Aims. We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique.Methods. We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S -index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times.Results. We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a “magnetic strip” for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro . Our results show that the magnetic fields of these giants are produced by a dynamo, possibly of α -ω origin since Ro is in general smaller than unity. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, η Psc) are detected with magnetic field strength at the sub-Gauss level. Besides Arcturus, these stars were not considered to be active giants before this study and are very similar in other respects to ordinary giants, with S -index indicating consistency with basal chromospheric flux.

120 citations


Authors

Showing all 18074 results

NameH-indexPapersCitations
Dimitri Bourilkov134148996884
Eduardo De Moraes Gregores133145492464
Georgi Sultanov132149393318
Plamen Iaydjiev131128587958
Pedro G Mercadante129133186378
Jordan Damgov129119585490
Roumyana Hadjiiska126100373091
Mircho Rodozov12497270519
Cesar Augusto Bernardes12496570889
Viktor Matveev123121273939
Ayda Beddall12081667063
Andrey Marinov11989357183
Mariana Vutova11760656698
Lester Packer11275163116
Patrick Couvreur11167856735
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

National Research Council
76K papers, 2.4M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

89% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022137
20211,323
20201,465
20191,285
20181,248