scispace - formally typeset
Search or ask a question
Institution

McGill University

EducationMontreal, Quebec, Canada
About: McGill University is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Context (language use). The organization has 72688 authors who have published 162565 publications receiving 6966523 citations. The organization is also known as: Royal institution of advanced learning & University of McGill College.


Papers
More filters
Journal ArticleDOI
TL;DR: This primer will equip both scientists and practitioners to understand the ontology and methodology of scale development and validation, thereby facilitating the advancement of the understanding of a range of health, social, and behavioral outcomes.
Abstract: Scale development and validation are critical to much of the work in the health, social, and behavioral sciences. However, the constellation of techniques required for scale development and evaluation can be onerous, jargon-filled, unfamiliar, and resource-intensive. Further, it is often not a part of graduate training. Therefore, our goal was to concisely review the process of scale development in as straightforward a manner as possible, both to facilitate the development of new, valid, and reliable scales, and to help improve existing ones. To do this, we have created a primer for best practices for scale development in measuring complex phenomena. This is not a systematic review, but rather the amalgamation of technical literature and lessons learned from our experiences spent creating or adapting a number of scales over the past several decades. We identified three phases that span nine steps. In the first phase, items are generated and the validity of their content is assessed. In the second phase, the scale is constructed. Steps in scale construction include pre-testing the questions, administering the survey, reducing the number of items, and understanding how many factors the scale captures. In the third phase, scale evaluation, the number of dimensions is tested, reliability is tested, and validity is assessed. We have also added examples of best practices to each step. In sum, this primer will equip both scientists and practitioners to understand the ontology and methodology of scale development and validation, thereby facilitating the advancement of our understanding of a range of health, social, and behavioral outcomes.

1,523 citations

Journal ArticleDOI
TL;DR: An overview of the main functional modules and the general workflow of MetaboAnalyst 4.0 is provided, followed by 12 detailed protocols: © 2019 by John Wiley & Sons, Inc.
Abstract: MetaboAnalyst (https://www.metaboanalyst.ca) is an easy-to-use web-based tool suite for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since its first release in 2009, MetaboAnalyst has evolved significantly to meet the ever-expanding bioinformatics demands from the rapidly growing metabolomics community. In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst supports a wide array of functions for statistical, functional, as well as data visualization tasks. Some of the most widely used approaches include PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), clustering analysis and visualization, MSEA (metabolite set enrichment analysis), MetPA (metabolic pathway analysis), biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. The current version of MetaboAnalyst (4.0) features a complete overhaul of the user interface and significantly expanded underlying knowledge bases (compound database, pathway libraries, and metabolite sets). Three new modules have been added to support pathway activity prediction directly from mass peaks, biomarker meta-analysis, and network-based multi-omics data integration. To enable more transparent and reproducible analysis of metabolomic data, we have released a companion R package (MetaboAnalystR) to complement the web-based application. This article provides an overview of the main functional modules and the general workflow of MetaboAnalyst 4.0, followed by 12 detailed protocols: © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Data uploading, processing, and normalization Basic Protocol 2: Identification of significant variables Basic Protocol 3: Multivariate exploratory data analysis Basic Protocol 4: Functional interpretation of metabolomic data Basic Protocol 5: Biomarker analysis based on receiver operating characteristic (ROC) curves Basic Protocol 6: Time-series and two-factor data analysis Basic Protocol 7: Sample size estimation and power analysis Basic Protocol 8: Joint pathway analysis Basic Protocol 9: MS peaks to pathway activities Basic Protocol 10: Biomarker meta-analysis Basic Protocol 11: Knowledge-based network exploration of multi-omics data Basic Protocol 12: MetaboAnalystR introduction.

1,522 citations

Book ChapterDOI
01 Jan 2001
TL;DR: In this article, the authors introduce the concept of functional data analysis (FDA) to describe the smoothness of the process of generating functional data from a set of observed curves and images.
Abstract: Most statistical analyses involve one or more observations taken on each of a number of individuals in a sample, with the aim of making inferences about the general population from which the sample is drawn. In an increasing number of fields, these observations are curves or images. Curves and images are examples of functions, since an observed intensity is available at each point on a line segment, a portion of a plane, or a volume. For this reason, we call observed curves and images ‘functional data,’ and statistical methods for analyzing such data are described by the term ‘functional data analysis’ (FDA). It is the smoothness of the processes generating functional data that differentiates this type of data from more classical multivariate observations. This smoothness means that we can work with the information in the derivatives of functions or images. This article includes several illustrative examples.

1,521 citations

Journal ArticleDOI
10 May 2012-Nature
TL;DR: A comprehensive meta-analysis is used to examine the relative yield performance of organic and conventional farming systems globally, and shows that, overall, organic yields are typically lower than conventional yields.
Abstract: Numerous reports have emphasized the need for major changes in the global food system: agriculture must meet the twin challenge of feeding a growing population, with rising demand for meat and high-calorie diets, while simultaneously minimizing its global environmental impacts. Organic farming—a system aimed at producing food with minimal harm to ecosystems, animals or humans—is often proposed as a solution. However, critics argue that organic agriculture may have lower yields and would therefore need more land to produce the same amount of food as conventional farms, resulting in more widespread deforestation and biodiversity loss, and thus undermining the environmental benefits of organic practices. Here we use a comprehensive meta-analysis to examine the relative yield performance of organic and conventional farming systems globally. Our analysis of available data shows that, overall, organic yields are typically lower than conventional yields. But these yield differences are highly contextual, depending on system and site characteristics, and range from 5% lower organic yields (rain-fed legumes and perennials on weak-acidic to weak-alkaline soils), 13% lower yields (when best organic practices are used), to 34% lower yields (when the conventional and organic systems are most comparable). Under certain conditions—that is, with good management practices, particular crop types and growing conditions—organic systems can thus nearly match conventional yields, whereas under others it at present cannot. To establish organic agriculture as an important tool in sustainable food production, the factors limiting organic yields need to be more fully understood, alongside assessments of the many social, environmental and economic benefits of organic farming systems.

1,520 citations

Journal ArticleDOI
TL;DR: An association analysis in CAD cases and controls identifies 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants strongly associated with CAD at a 5% false discovery rate (FDR).
Abstract: Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2) < 0.2) strongly associated with CAD at a 5% false discovery rate (FDR). Together, these variants explain approximately 10.6% of CAD heritability. Of the 46 genome-wide significant lead SNPs, 12 show a significant association with a lipid trait, and 5 show a significant association with blood pressure, but none is significantly associated with diabetes. Network analysis with 233 candidate genes (loci at 10% FDR) generated 5 interaction networks comprising 85% of these putative genes involved in CAD. The four most significant pathways mapping to these networks are linked to lipid metabolism and inflammation, underscoring the causal role of these activities in the genetic etiology of CAD. Our study provides insights into the genetic basis of CAD and identifies key biological pathways.

1,518 citations


Authors

Showing all 73373 results

NameH-indexPapersCitations
Karl J. Friston2171267217169
Yi Chen2174342293080
Yoshua Bengio2021033420313
Irving L. Weissman2011141172504
Mark I. McCarthy2001028187898
Lewis C. Cantley196748169037
Martin White1962038232387
Michael Marmot1931147170338
Michael A. Strauss1851688208506
Alan C. Evans183866134642
Douglas R. Green182661145944
David A. Weitz1781038114182
David L. Kaplan1771944146082
Hyun-Chul Kim1764076183227
Feng Zhang1721278181865
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

98% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023342
20221,000
20219,055
20208,668
20197,828
20187,237