scispace - formally typeset
Search or ask a question
Institution

McGill University

EducationMontreal, Quebec, Canada
About: McGill University is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Context (language use). The organization has 72688 authors who have published 162565 publications receiving 6966523 citations. The organization is also known as: Royal institution of advanced learning & University of McGill College.


Papers
More filters
Journal ArticleDOI
TL;DR: These findings provide a unique opportunity for understanding how environmental factors can lead to individual differences in brain development, and for improving the programmes and policies that are designed to alleviate SES-related disparities in mental health and academic achievement.
Abstract: Socioeconomic status (SES) influences brain development. Farah and colleagues discuss evidence that prenatal factors, parent–child interactions and cognitive stimulation mediate this effect, and consider implications for alleviating SES-related disparities in mental health and academic achievement. Human brain development occurs within a socioeconomic context and childhood socioeconomic status (SES) influences neural development — particularly of the systems that subserve language and executive function. Research in humans and in animal models has implicated prenatal factors, parent–child interactions and cognitive stimulation in the home environment in the effects of SES on neural development. These findings provide a unique opportunity for understanding how environmental factors can lead to individual differences in brain development, and for improving the programmes and policies that are designed to alleviate SES-related disparities in mental health and academic achievement.

1,082 citations

Journal ArticleDOI
TL;DR: Several new questions must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems, including questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems.
Abstract: Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the world's biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems.

1,082 citations

Journal ArticleDOI
08 Oct 1999-Science
TL;DR: The c-Cbl protein acted as an E3 that can recognize tyrosine-phosphorylated substrates, such as the activated platelet-derived growth factor receptor, through its SH2 domain and that recruits and allosterically activates an E2 ubiquitin-conjugating enzyme through its RING domain.
Abstract: Ubiquitination of receptor protein-tyrosine kinases (RPTKs) terminates signaling by marking active receptors for degradation. c-Cbl, an adapter protein for RPTKs, positively regulates RPTK ubiquitination in a manner dependent on its variant SRC homology 2 (SH2) and RING finger domains. Ubiquitin-protein ligases (or E3s) are the components of ubiquitination pathways that recognize target substrates and promote their ligation to ubiquitin. The c-Cbl protein acted as an E3 that can recognize tyrosine-phosphorylated substrates, such as the activated platelet-derived growth factor receptor, through its SH2 domain and that recruits and allosterically activates an E2 ubiquitin-conjugating enzyme through its RING domain. These results reveal an SH2-containing protein that functions as a ubiquitin-protein ligase and thus provide a distinct mechanism for substrate targeting in the ubiquitin system.

1,081 citations

Journal ArticleDOI
20 Nov 1996-JAMA
TL;DR: It is suggested that genotype-phenotype correlations do exist and, if made reliably absolute, could prove useful in the future in clinical management with respect to screening, surveillance, and prophylaxis, as well as provide insight into the genetic effects of particular mutations.
Abstract: Objective. —Multiple endocrine neoplasia type 2 (MEN 2) is an autosomal dominant disorder. The 3 recognized subtypes include MEN 2A, characterized by medullary thyroid carcinoma (MTC), pheochromocytoma (pheo), and hyperparathyroidism (HPT); MEN 2B, by MTC, pheo, and characteristic stigmata; and familial MTC (FMTC), by the presence of MTC only. The purpose of this study was to establish the relationship between specific mutations and the presence of certain disease features in MEN 2 which could help in clinical decision making. Design. —Correlative survey study of 477 MEN 2 families. Setting. —Eighteen tertiary referral centers worldwide. Patients. —A total of 477 independent MEN 2 families. Main Outcome Measures. —Association between the position and type of germline mutation in the RET proto-oncogene and the presence or absence of MTC, pheo, HPT, and/or other features in a family. Results. —There is a statistically significant association between the presence of any mutation at a specific position (codon 634) and the presence of pheo and HPT. The presence of a specific mutation, CGC at codon 634, has yet to be associated with FMTC. Conversely, mutations at codons 768 and 804 are thus far seen only with FMTC, while codon 918 mutation is MEN 2B-specific. Rare families with both MEN 2 and Hirschsprung disease were found to have MEN 2-specific codon mutations. Patients with Hirschsprung disease presenting with such mutations should be monitored for the possible development of MEN 2 tumors. Conclusions. —This consortium analysis suggests that genotype-phenotype correlations do exist and, if made reliably absolute, could prove useful in the future in clinical management with respect to screening, surveillance, and prophylaxis, as well as provide insight into the genetic effects of particular mutations.

1,081 citations

Journal ArticleDOI
TL;DR: The hydrogen storage properties of MgH 2 are significantly enhanced by a proper engineering of the microstructure and surface as discussed by the authors, which gives remarkable improvement of absorption/desorption kinetics.

1,081 citations


Authors

Showing all 73373 results

NameH-indexPapersCitations
Karl J. Friston2171267217169
Yi Chen2174342293080
Yoshua Bengio2021033420313
Irving L. Weissman2011141172504
Mark I. McCarthy2001028187898
Lewis C. Cantley196748169037
Martin White1962038232387
Michael Marmot1931147170338
Michael A. Strauss1851688208506
Alan C. Evans183866134642
Douglas R. Green182661145944
David A. Weitz1781038114182
David L. Kaplan1771944146082
Hyun-Chul Kim1764076183227
Feng Zhang1721278181865
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

98% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023342
20221,000
20219,055
20208,668
20197,828
20187,237