scispace - formally typeset
Search or ask a question

Showing papers by "Nankai University published in 2012"


Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations


Journal ArticleDOI
TL;DR: The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes, and the design and optimization of air-electrode structure are outlined.
Abstract: Because of the remarkably high theoretical energy output, metal–air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal–air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal–air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic–organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal–air batteries (219 references).

2,211 citations


Journal ArticleDOI
F. P. An, J. Z. Bai, A. B. Balantekin1, H. R. Band1  +271 moreInstitutions (34)
TL;DR: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations.
Abstract: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ13 with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW_(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton–GW_(th)–day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940± 0.011(stat.)±0.004(syst.). A rate-only analysis finds sin^22θ_(13)=0.092±0.016(stat.)±0.005(syst.) in a three-neutrino framework.

2,163 citations


Journal ArticleDOI
TL;DR: In this paper, a systematic review of epidemiological surveys of autistic disorder and pervasive developmental disorders (PDDs) worldwide was provided, where the authors considered the possible impact of geographic, cultural/ethnic/ethnic, and socioeconomic factors on prevalence estimates and on clinical presentation of PDD.
Abstract: We provide a systematic review of epidemiological surveys of autistic disorder and pervasive developmental disorders (PDDs) worldwide. A secondary aim was to consider the possible impact of geographic, cultural/ethnic, and socioeconomic factors on prevalence estimates and on clinical presentation of PDD. Based on the evidence reviewed, the median of prevalence estimates of autism spectrum disorders was 62/10 000. While existing estimates are variable, the evidence reviewed does not support differences in PDD prevalence by geographic region nor of a strong impact of ethnic/cultural or socioeconomic factors. However, power to detect such effects is seriously limited in existing data sets, particularly in low-income countries. While it is clear that prevalence estimates have increased over time and these vary in different neighboring and distant regions, these findings most likely represent broadening of the diagnostic concets, diagnostic switching from other developmental disabilities to PDD, service availability, and awareness of autistic spectrum disorders in both the lay and professional public. The lack of evidence from the majority of the world's population suggests a critical need for further research and capacity building in low- and middle-income countries. Autism Res 2012, 5: 160–179. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.

2,085 citations


Journal ArticleDOI
TL;DR: The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti(3)C(2) MXene a promising anode material for Li ion batteries.
Abstract: Density functional theory (DFT) computations were performed to investigate the electronic properties and Li storage capability of Ti3C2, one representative MXene (M represents transition metals, and X is either C or/and N) material, and its fluorinated and hydroxylated derivatives. The Ti3C2 monolayer acts as a magnetic metal, while its derived Ti3C2F2 and Ti3C2(OH)2 in their stable conformations are semiconductors with small band gaps. Li adsorption forms a strong Coulomb interaction with Ti3C2-based hosts but well preserves its structural integrity. The bare Ti3C2 monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti3C2Li2 stoichiometry). The surface functionalization of F and OH blocks Li transport and decreases Li storage capacity, which should be avoided in experiments. The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti3C2 MXene a promising anode material for...

1,609 citations


Journal ArticleDOI
25 Jun 2012-Small
TL;DR: Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field are discussed.
Abstract: Due to their unique 2D structure and outstanding intrinsic physical properties, such as extraordinarily high electrical conductivity and large surface area, graphene-based materials exhibit great potential for application in supercapacitors. In this review, the progress made so far for their applications in supercapacitors is reviewed, including electrochemical double-layer capacitors, pseudo-capacitors, and asymmetric supercapacitors. Compared with traditional electrode materials, graphene-based materials show some novel characteristics and mechanisms in the process of energy storage and release. Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field, are also discussed.

1,195 citations


Journal ArticleDOI
TL;DR: It is reported that FUNDC1, an integral mitochondrial outer-membrane protein, is a receptor for hypoxia-induced mitophagy, and its findings offer insights into mitochondrial quality control in mammalian cells.
Abstract: Accumulating evidence has shown that dysfunctional mitochondria can be selectively removed by mitophagy. Dysregulation of mitophagy is implicated in the development of neurodegenerative disease and metabolic disorders. How individual mitochondria are recognized for removal and how this process is regulated remain poorly understood. Here we report that FUNDC1, an integral mitochondrial outer-membrane protein, is a receptor for hypoxia-induced mitophagy. FUNDC1 interacted with LC3 through its typical LC3-binding motif Y(18)xxL(21), and mutation of the LC3-interaction region impaired its interaction with LC3 and the subsequent induction of mitophagy. Knockdown of endogenous FUNDC1 significantly prevented hypoxia-induced mitophagy, which could be reversed by the expression of wild-type FUNDC1, but not LC3-interaction-deficient FUNDC1 mutants. Mechanistic studies further revealed that hypoxia induced dephosphorylation of FUNDC1 and enhanced its interaction with LC3 for selective mitophagy. Our findings thus offer insights into mitochondrial quality control in mammalian cells.

1,142 citations


Journal ArticleDOI
TL;DR: In this article, the authors summarized thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries and compared the cell performances of these materials, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials.
Abstract: Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials.

1,096 citations


Journal ArticleDOI
TL;DR: The interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, is uncovered, and it is suggested that the corresponding Raman peak measures the interlayer coupling.
Abstract: The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from 43 cm 1 in bulk graphite to 31 cm 1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

601 citations


Journal ArticleDOI
TL;DR: This Account summarizes the research on the analytical applications of MOFs ranging from sampling to chromatographic separation, and develops an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity.
Abstract: In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal–organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation.MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric form...

594 citations


Journal ArticleDOI
16 Nov 2012-Science
TL;DR: Guest-filled, twist-spun carbon nanotube yarns are designed as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation and can solve the problems of speed and lifetime.
Abstract: Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.

Journal ArticleDOI
TL;DR: The results demonstrate that structure fine turning could cause significant performance difference and with that the performance of solution-processed small-molecule solar cells can indeed be comparable with or even surpass their polymer counterparts.
Abstract: Small molecules, namely, DCAO3TBDT and DR3TBDT, with 2-ethylhexoxy substituted BDT as the central building block and octyl cyanoacetate and 3-ethylrhodanine as different terminal units with the same linkage of dioctyltertthiophene, have been designed and synthesized. The photovoltaic properties of these two molecules as donors and fullerene derivatives as the acceptors in bulk heterojunction solar cells are studied. Among them, DR3TBDT shows excellent photovoltaic performance, and power conversion efficiency as high as 7.38% (certified 7.10%) under AM 1.5G irradiation (100 mW cm–2) has been achieved using the simple solution spin-coating fabrication process, which is the highest efficiency reported to date for any small-molecule-based solar cells. The results demonstrate that structure fine turning could cause significant performance difference and with that the performance of solution-processed small-molecule solar cells can indeed be comparable with or even surpass their polymer counterparts.

Journal ArticleDOI
TL;DR: This Account describes recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands, which proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, and O-H inserts ofα-diazoacetates into phenols and water.
Abstract: Carbon–heteroatom bonds (C–X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C–X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom–hydrogen bond (X–H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C–X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X–H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C–H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X–H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms.In this ...

Journal ArticleDOI
TL;DR: This is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China.

Journal ArticleDOI
TL;DR: The stimuli-responsiveness and functions of calixarene-based supramolecular polymers are illustrated, which endow them with a broad range of potential applications as smart, self-healing materials and delivery carriers.
Abstract: Calixarenes are one kind of phenol–formaldehyde cyclic oligomers, discovered from the Bakelite process. Their intrinsic characteristics, including the unique structural scaffold, facile modification and adjustable inclusion property, show pronounced potential for supramolecular polymerization. In this tutorial review, we summarize the current stage of fabrication of calixarene-based supramolecular polymers. Three types of calixarene-based supramolecular polymers are, respectively, illustrated according to the different activities of calixarenes: (1) calixarene-based supramolecular polycaps, (2) supramolecular polymers with polymeric calixarene scaffolds where the cavities remain unexploited; (3) supramolecular polymers formed by the host–guest interactions offered by calixarene cavities. Furthermore, the stimuli-responsiveness and functions of calixarene-based supramolecular polymers are illustrated, which endow them with a broad range of potential applications as smart, self-healing materials and delivery carriers.

Journal ArticleDOI
TL;DR: In this paper, a polyaniline-coated sulfur/conductive carbon-black (PANI@S/C) composites with different contents of sulfur are prepared via two facile processes including ball-milling and thermal treatment of the conductive carbon black and sublimed sulfur, followed by an in situ chemical oxidative polymerization of the aniline monomer in the presence of the S/C composite and ammonium persulfate.
Abstract: Polyaniline-coated sulfur/conductive-carbon-black (PANI@S/C) composites with different contents of sulfur are prepared via two facile processes including ball-milling and thermal treatment of the conductive carbon black and sublimed sulfur, followed by an in situ chemical oxidative polymerization of the aniline monomer in the presence of the S/C composite and ammonium persulfate. The microstructure and electrochemical performance of the as-prepared composites are investigated systematically. It is demonstrated that the polyaniline, with a thickness of ≈5–10 nm, is coated uniformly onto the surface of the S/C composite forming a core/shell structure. The PANI@S/C composite with 43.7 wt% sulfur presents the optimum electrochemical performance, including a large reversible capacity, a good coulombic efficiency, and a high active-sulfur utilization. The formation of the unique core/shell structure in the PANI@S/C composites is responsible for the improvement of the electrochemical performance. In particular, the high-rate charge/discharge capability of the PANI@S/C composites is excellent due to a synergistic effect on the high electrical conductivity from both the conductive carbon black in the matrix and the PANI on the surface. Even at an ultrahigh rate (10C), a maximum discharge capacity of 635.5 mA h per g of sulfur is still retained for the PANI@S/C composite after activation, and the discharge capacity retention is over 60% after 200 cycles.

Journal ArticleDOI
TL;DR: There is no conclusive evidence of the preoperative predictors for mortality following hip fractures, and special attention should be paid to the above 12 strong evidence predictors.
Abstract: Background Hip fractures are always associated with a high postoperative mortality, the preoperative predictors for mortality have neither been well identified or summarised. This systematic review and meta-analysis was performed to identify the preoperative non-interventional predictors for mortality in hip fracture patients, especially focused on 1 year mortality. Methods Non-interventional studies were searched in Pubmed, Embase, Cochrane central database (all to February 26th, 2011). Only prospective studies and retrospective studies with prospective collected data were included. Qualities of included studies were assessed by a standardised scale previous reported for observational studies. The effects of individual studies were combined with the study quality score using a previous reported model of best-evidence synthesis. The hazard ratios of strong evidence predictors were combined only by high quality studies. Results 75 included studies with 94 publications involving 64,316 patients were included and the available observations was a heterogeneous group. The overall inpatient or 1 month mortality was 13.3%, 3–6 months was 15.8%, 1 year 24.5% and 2 years 34.5%. There were strong evidence for 12 predictors, including advanced age, male gender, nursing home or facility residence, poor preoperative walking capacity, poor activities of daily living, higher ASA grading, poor mental state, multiple comorbidities, dementia or cognitive impairment, diabetes, cancer and cardiac disease. We also identified 7 moderate evidence and 12 limited evidence mortality predictors, and only the race was identified as the conflicting evidence predictor. Conclusion Whilst there is no conclusive evidence of the preoperative predictors for mortality following hip fractures, special attention should be paid to the above 12 strong evidence predictors. Future researches were still needed to evaluate the effects of these predictors.

Journal ArticleDOI
TL;DR: In this article, the adsorption of malachite green from aqueous solution on a highly porous metal-organic framework MIL-100(Fe) was studied in view of the adaption isotherm, thermodynamics, kinetics, and regeneration of the sorbent.
Abstract: The adsorption of malachite green from aqueous solution on a highly porous metal–organic framework MIL-100(Fe) was studied in view of the adsorption isotherm, thermodynamics, kinetics, and regeneration of the sorbent. The adsorption isotherms of malachite green on MIL-100(Fe) followed the Freundlich model, and MIL-100(Fe) possessed heterogeneous surface caused by the presence of different functional groups on the surface. The adsorption of malachite green on MIL-100(Fe) is controlled by an entropy effect rather than an enthalpy change, and obeyed a pseudo-second-order kinetics. Analysis of the intraparticle diffusion plots revealed that more than one process affected the adsorption, and film (boundary layer) diffusion controlled the adsorption rate at the beginning. Evidence from zeta potential and X-ray photoelectron spectroscopic data showed that the adsorption of malachite green was also driven by electrostatic attraction and the interaction between the Lewis base –N(CH3)2 in malachite green and the water molecule coordinated metal sites of MIL-100(Fe). MIL-100(Fe) gave much higher adsorption capacity for malachite green than other conventional adsorbents such as activated carbon and natural zeolite. The high adsorption capacity, good solvent stability, and excellent reusability make MIL-100(Fe) attractive for the removal of MG from aqueous solution.

Journal ArticleDOI
TL;DR: ZnO nanorods were fabricated by a simple low-temperature hydrothermal process in high yield (about 85%), starting with Zn(OH) 4 2− aqueous solution in the presence of CTAB, the CTA board serving as a structure director, and no calcination process was needed as discussed by the authors.
Abstract: ZnO nanorods were fabricated by a simple low-temperature hydrothermal process in high yield (about 85%), starting with Zn(OH) 4 2− aqueous solution in the presence of CTAB, the CTAB serving as a structure director, and no calcination process was needed. The morphology and crystal structure of the prepared ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM) and Transmission electron microscope (TEM). The ZnO nanorods were then used to construct a gas sensor for ethanol detection at different operating temperature. The as-prepared ZnO nanorod gas sensor exhibited a high, reversible and fast response to ethanol, indicating its potential application as a gas sensor to detect ethanol.

Journal ArticleDOI
Zhenzhen Yang1, Liang-Nian He1, Jiao Gao1, An-Hua Liu1, Bing Yu1 
TL;DR: In this paper, the authors proposed a carbon capture and utilization (CCU) strategy as an alternative approach to addressing the energy penalty problem in CCS, which could render this system suitable for accomplishing chemical transformation of CO2 under low pressure to avoid additional desorption step.
Abstract: Carbon dioxide chemistry (in particular, capture and conversion) has attracted much attention from the scientific community due to global warming associated with positive carbon accumulation. The most widely used chemical absorption technique for carbon capture and storage/sequestration (CCS) would be essentially adopting amino-containing absorbents through formation of C–N bond in terms of mechanistic consideration. However, extensive energy input in desorption and compression process would be a crucial barrier to realize practical CCS. On the other hand, CO2 is very attractive as an environmentally friendly feedstock to replace the hazardous phosgene route for making commodity chemicals, fuels, and materials from a standpoint of green chemistry, whereas the reactions involving CO2 are commonly carried out at high pressure, which may not be economically suitable and also pose safety concerns. The challenge is to develop catalysts that are capable of activating CO2 under low pressure (preferably at 1 atm), and thus incorporating CO2 into organic molecules catalytically. We have proposed a carbon capture and utilization (CCU) strategy as an alternative approach to addressing the energy penalty problem in CCS. The essence of our strategy is to use captured CO2, also considered as the activated form of CO2, which could render this system suitable for accomplishing chemical transformation of CO2 under low pressure to avoid an additional desorption step. Indeed, CO2 could be activated through the formation of carbamate/alkyl carbonate with Lewis basic nitrogen species. In this review, we would like to discuss and update advances on CCU, particularly C–N bond formation with the production of oxazolidinones, quinazolines, carbamates, isocyanates and polyurethanes by using CO2 as C1 feedstock, and CO2 capture by amino-containing absorbents, including conventional aqueous solution of amine, chilled ammonia, amino-functionalized ionic liquids and solid absorbents such as amino-functionalized silica, carbon, polymers and resin, presumably leading to CO2's activation and thus subsequent conversion through C–N bond formation pathway.

Journal ArticleDOI
Heng Dong1, Hongbing Yu1, Xin Wang1, Qixing Zhou1, Junli Feng1 
TL;DR: This study demonstrated that inexpensive, highly reproducible, high performance and scalable air-cathode can be produced by rolling method without using noble metal and expensive binder.

Journal ArticleDOI
TL;DR: ZMoS2NRs have a remarkably enhanced binding interaction with Li without sacrificing the Li mobility, and thus are promising as cathode materials of Li-ion batteries with a high power density and fast charge/discharge rates.
Abstract: By means of density functional theory computations, we systematically investigated the adsorption and diffusion of Li on the 2-D MoS2 nanosheets and 1-D zigzag MoS2 nanoribbons (ZMoS2NRs), in comparison with MoS2 bulk. Although the Li mobility can be significantly facilitated in MoS2 nanosheets, their decreased Li binding energies make them less attractive for cathode applications. Because of the presence of unique edge states, ZMoS2NRs have a remarkably enhanced binding interaction with Li without sacrificing the Li mobility, and thus are promising as cathode materials of Li-ion batteries with a high power density and fast charge/discharge rates.

Journal ArticleDOI
02 Jul 2012-Analyst
TL;DR: A facile magnetization of MOF MIL-101(Cr) is shown for rapid magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples and the results showed that hydrophobic and π-π interactions between the PAHs and the framework terephthalic acid molecules, and the ρ-complexation between PAHS and the Lewis acid sites in the pores of MIL- 101 play a significant role in the ads
Abstract: The unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities and the availability of in-pore functionality and outer-surface modification make metal–organic frameworks (MOFs) attractive for diverse analytical applications. However, integration of MOFs with magnets for magnetic solid-phase extraction for analytical application has not been attempted so far. Here we show a facile magnetization of MOF MIL-101(Cr) for rapid magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. MIL-101 is attractive as a sorbent for solid-phase extraction of pollutants in aqueous solution due to its high surface area, large pores, accessible coordinative unsaturated sites, and excellent chemical and solvent stability. In situ magnetization of MIL-101 microcrystals as well as magnetic solid-phase extraction of PAHs was achieved simultaneously by simply mixing MIL-101 and silica-coated Fe3O4 microparticles in a sample solution under sonication. Such MOF-based magnetic solid-phase extraction in combination with high-performance liquid chromatography gave the detection limits of 2.8–27.2 ng L−1 and quantitation limits of 6.3–87.7 ng L−1 for the PAHs. The relative standard deviations for intra- and inter-day analyses were in the range of 3.1–8.7% and 6.1–8.5%, respectively. The results showed that hydrophobic and π–π interactions between the PAHs and the framework terephthalic acid molecules, and the π-complexation between PAHs and the Lewis acid sites in the pores of MIL-101 play a significant role in the adsorption of PAHs.

Journal ArticleDOI
TL;DR: An enzyme-responsive vesicle using p-sulfonatocalix[4]arene as the macrocyclic host and natural enzyme-cleavable myristoylcholine as the guest molecule is reported, which is dissipated by cholinesterase with high specificity and efficiency.
Abstract: Enzyme-responsive, amphiphilic self-assembly represents one of the increasingly significant topics in biomaterials research and finds feasible applications to the controlled release of therapeutic agents at specific sites where the target enzyme is located. The supramolecular approach, using “superamphiphiles”, provides a smart way to fabricate drug delivery systems responsive to enzymatic catalysis. In this work based on the concept of supramolecular chemistry, we report an enzyme-responsive vesicle using p-sulfonatocalix[4]arene as the macrocyclic host and natural enzyme-cleavable myristoylcholine as the guest molecule. The complexation of p-sulfonatocalix[4]arene with myristoylcholine directs the formation of a supramolecular binary vesicle, which is dissipated by cholinesterase with high specificity and efficiency. Cholinesterase is a key protein overexpressed in Alzheimer’s disease, and therefore, the present system may have potential for the delivery of Alzheimer’s disease drugs.

Journal ArticleDOI
01 Feb 2012-EPL
TL;DR: It is found that the stronger the bias in the utility function, the higher the level of public cooperation and cooperation is promoted because the aggressive invasion of defectors is more sensitive to the slowing-down than the build-up of collective efforts in sizable groups.
Abstract: We study the evolution of public cooperation on two interdependent networks that are connected by means of a utility function, which determines to what extent payoffs in one network influence the success of players in the other network. We find that the stronger the bias in the utility function, the higher the level of public cooperation. Yet the benefits of enhanced public cooperation on the two networks are just as biased as the utility functions themselves. While cooperation may thrive on one network, the other may still be plagued by defectors. Nevertheless, the aggregate level of cooperation on both networks is higher than the one attainable on an isolated network. This positive effect of biased utility functions is due to the suppressed feedback of individual success, which leads to a spontaneous separation of characteristic time scales of the evolutionary process on the two interdependent networks. As a result, cooperation is promoted because the aggressive invasion of defectors is more sensitive to the slowing-down than the build-up of collective efforts in sizable groups.

Journal ArticleDOI
Shu-Lin Liu1, J. J. Hu1, Nanfu Yan1, Guiling Pan1, Guo-Ran Li1, X. P. Gao1 
TL;DR: In this paper, the electrochemical aluminum storage of anatase TiO2 nanotube arrays in AlCl3 aqueous solution was investigated, and it was shown that aluminum ions can be reversibly inserted/extracted into/from anataseTiO2 arrays in ALCl3 annealing solution due to the small radius steric effect of aluminum ions.
Abstract: The electrochemical aluminum storage of anatase TiO2 nanotube arrays in AlCl3 aqueous solution is investigated. It is firstly demonstrated that aluminum ions can be reversibly inserted/extracted into/from anatase TiO2 nanotube arrays in AlCl3 aqueous solution due to the small radius steric effect of aluminum ions, indicating a potential application in aluminum ion batteries.

Journal ArticleDOI
TL;DR: It is concluded that the up-regulated HULC by HBx promotes proliferation of hepatoma cells through suppressing p18, which provides new insight into the roles of lncRNAs in HBx-related hepatocarcinogenesis.

Journal ArticleDOI
TL;DR: An ultra-thin metamaterial constructed by an ensemble of the same type of anisotropic aperture antennas with phase discontinuity for wave front manipulation across the metammaterial enables effective wave front engineering within a subwavelength scale.
Abstract: We propose an ultra-thin metamaterial constructed by an ensemble of the same type of anisotropic aperture antennas with phase discontinuity for wave front manipulation across the metamaterial. A circularly polarized light is completely converted to the cross-polarized light which can either be bent or focused tightly near the diffraction limit. It depends on a precise control of the optical-axis profile of the antennas on a subwavelength scale, in which the rotation angle of the optical axis has a simple linear relationship to the phase discontinuity. Such an approach enables effective wave front engineering within a subwavelength scale.

Journal ArticleDOI
TL;DR: Overall, graphene has demonstrated performance that equals or surpasses that of other new carbon allotropes, combined with its easier access and better processing ability, offer the potential basis for truly revolutionary applications and as a future fundamental technological material beyond the silicon age.
Abstract: Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated “free” and “perfect” graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity.In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the mos...

Journal ArticleDOI
TL;DR: In this article, the authors investigated the power conversion efficiency of small-molecule-based organic photovoltaic (OPV) cells for an alternate of silicon semiconductor-based solar cells.
Abstract: In the past few years, great progress has been made in organic photovoltaic (OPV) cells for an alternate of silicon semiconductorbased solar cells. OPV has the advantages of clean, low-cost, flexibility, and the possibility of roll-to-roll production.[1–4] Currently, most of the works have been focused on polymer donor molecules using bulk heterojunction (BHJ) architecture and [6,6]-phenyl-C61–butyric acid methyl ester (PC61BM) as the acceptor.[5,6] Indeed, in addition to the currently better OPV performance than small molecules, polymers have the advantages for such as better film forming quality and so on.[7] However, it cannot be denied that there are disadvantages for polymer-based OPV, such as batch to batch reproducibility, difficulty of purification, and so on. In contrast, small molecules intrinsically do not have such flaws;[8] additionally, their band structures could be tuned easily with much more choices of chemical modification. Furthermore, small molecules generally have higher charge mobility and open voltages.[9,10] However, even with these advantages, small-molecule-based OPV cells have not been investigated as intensively as that of their polymer counterparts because one of the major problems for small molecules is their generally poor film quality when using the simple solution spinning process.[11] This has been hampering their performance, and indeed their power conversion efficiencies (PCEs) (4%–5%)[12–18] are still significantly lower compared with that (>7%)[19–25] from polymers. It is thus expected that better PCE could be achieved when their intrinsic bad film quality and morphology in BHJ architecture could be improved combining with their other advantages. But to achieve this, careful molecule design has to be carried out to address many factors collectively, including their molar absorption, morphology compatibility with the acceptors for a better film quality, and so on.