scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a metaloxide-semiconductor capacitor using SrTiO{sub 3} as an alternative to SiOthinsp{sub 2} yields the extraordinary result of t{sub eqlt}10 {Angstrom}.
Abstract: The long-standing problem of growing a commensurate crystalline oxide interface with silicon has been solved. Alkaline earth and perovskite oxides can be grown in perfect registry on the (001) face of silicon, totally avoiding the amorphous silica phase that ordinarily forms when silicon is exposed to an oxygen containing environment. The physics of the heteroepitaxy lies in establishing a sequenced transition that uniquely addresses the thermodynamics of a layer-by-layer energy minimization at the interface. A metal-oxide-semiconductor capacitor using SrTiO{sub 3} as an alternative to SiOthinsp{sub 2} yields the extraordinary result of t{sub eq}{lt}10 {Angstrom} . {copyright} {ital 1998} {ital The American Physical Society}

964 citations

Journal ArticleDOI
TL;DR: This work demonstrates that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayers, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity.
Abstract: MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.

961 citations

Journal ArticleDOI
TL;DR: The quantum cluster theory as discussed by the authors is a set of approximations for infinite lattice models which treat correlations within the cluster explicitly, and correlations at longer length scales either perturbatively or within a mean-field approximation.
Abstract: This article reviews quantum cluster theories, a set of approximations for infinite lattice models which treat correlations within the cluster explicitly, and correlations at longer length scales either perturbatively or within a mean-field approximation. These methods become exact when the cluster size diverges, and most recover the corresponding mean-field approximation when the cluster size becomes 1. Although quantum cluster theories were originally developed to treat disordered systems, they have more recently been applied to the study of ordered and disordered correlated systems, which will be the focus of this review. After a brief historical review, the authors provide detailed derivations of three cluster formalisms: the cluster perturbation theory, the dynamical cluster approximation, and the cellular dynamical mean-field theory. They compare their advantages and review their applications to common models of correlated electron systems.

955 citations

01 Apr 2001
TL;DR: In this paper, the reduced electric quadrupole transition probability, B(E2)↑, from the ground state to the first-excited 2+ state of even-even nuclides are given in Table I.
Abstract: Adopted values for the reduced electric quadrupole transition probability, B(E2)↑, from the ground state to the first-excited 2+ state of even–even nuclides are given in Table I. Values of τ, the mean life of the 2+ state; E, the energy; and β, the quadrupole deformation parameter, are also listed there. The ratio of β to the value expected from the single-particle model is presented. The intrinsic quadrupole moment, Q0, is deduced from the B(E2)↑ value. The product E×B(E2)↑ is expressed as a percentage of the energy-weighted total and isoscalar E2 sum-rule strengths. Table II presents the data on which Table I is based, namely the experimental results for B(E2)↑ values with quoted uncertainties. Information is also given on the quantity measured and the method used. The literature has been covered to November 2000. The adopted B(E2)↑ values are compared in Table III with the values given by systematics and by various theoretical models. Predictions of unmeasured B(E2)↑ values are also given in Table III.

955 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994