scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
01 Oct 1997-Ecology
TL;DR: A graphical model is used that visualizes how facilitative patterns can be understood from the simultaneous effects of plant canopies on microsite light and moisture, and the growth responses of establishing seedlings to those factors.
Abstract: If plants cannot simultaneously acclimate to shade and drought because of physiological trade-offs, then plants are expected to be less tolerant to shading under drier conditions. One observation that, at first sight, seems incompatible with this idea is the fact that the establishment of new plants in dry areas is often restricted to shady sites under the canopy of other plants, called “nurse plants.” We use a graphical model to resolve this paradox. The model visualizes how facilitative patterns can be understood from the simultaneous effects of plant canopies on microsite light and moisture, and the growth responses of establishing seedlings to those factors. The approach emphasizes the fact that positive and negative effects of plant canopies always occur simultaneously. In the presented light–water model, facilitation only occurs when the improvement of plant water relations under the canopy exceeds the costs caused by lower light levels. This may be true under dry conditions, whereas in less dry sit...

1,019 citations

Journal ArticleDOI
01 Sep 2006-Science
TL;DR: Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.
Abstract: Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oomycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oomycete avirulence genes.

1,016 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the short fiber (02 mm to 04 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance.

1,016 citations

Journal ArticleDOI
TL;DR: The present study derives a quantitative relation between the amount of water in a cell and temperature using a differential equation involving cooling rate, surface-volume ratio, membrane permeability to water, and the temperature coefficient of the permeability constant.
Abstract: The survival of various cells subjected to low temperature exposure is higher when they are cooled slowly. This increase is consistent with the view that slow cooling decreases the probability of intracellular freezing by permitting water to leave the cell rapidly enough to keep the protoplasm at its freezing point. The present study derives a quantitative relation between the amount of water in a cell and temperature. The relation is a differential equation involving cooling rate, surface-volume ratio, membrane permeability to water, and the temperature coefficient of the permeability constant. Numerical solutions to this equation give calculated water contents which permit predictions as to the likelihood of intracellular ice formation. Both the calculated water contents and the predictions on internal freezing are consistent with the experimental observations of several investigators.

1,009 citations

Journal ArticleDOI
TL;DR: Electrical control of magnetism in a bilayer of CrI3 enables the realization of an electrically driven magnetic phase transition and the observation of the magneto-optical Kerr effect in 2D magnets.
Abstract: Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions1–3, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy4–6. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction2,4,7–9. Owing to their unique magnetic properties10–14, the recently reported two-dimensional magnets provide a new system for studying these features15–19. For instance, a bilayer of chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

1,000 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994