scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
29 May 2020-Science
TL;DR: The authors show that shifts in forest dynamics are already occurring, and the emerging pattern is that global forests are tending toward younger stands with faster turnover as old-growth forest with stable dynamics are dwindling.
Abstract: Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances.

476 citations

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +442 moreInstitutions (48)
TL;DR: The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p(T) < 9 GeV/c at midrapidity (y < 0.35) from heavy-flavor (charm and bottom) decays in Au + Au collisions at root s(NN) = 200 GeV as mentioned in this paper.
Abstract: The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p(T) < 9 GeV/c at midrapidity (y < 0.35) from heavy-flavor (charm and bottom) decays in Au + Au collisions at root s(NN) = 200 GeV. The nuclear modification factor R-AA relative to p + p collisions shows a strong suppression in central Au + Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy v(2) with respect to the reaction plane is observed for 0.5 < p(T) < 5 GeV/c indicating substantial heavy-flavor elliptic flow. Both R-AA and v(2) show a p(T) dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R-AA(p(T)) and v(2)(p(T)) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.

476 citations

Journal ArticleDOI
TL;DR: The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2), and the development of tunablemicroporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation.
Abstract: Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C(2)H(2)/C(2)H(4) have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C(2)H(2) and C(2)H(4). The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2)H(4).

474 citations

Journal ArticleDOI
TL;DR: In this article, a generalized theory of instantaneous reactive power for three-phase power systems is proposed, which is valid for sinusoidal or nonsinusoidal and balanced or unbalanced systems with or without zero-sequence currents and/or voltages.
Abstract: This paper presents harmonic and reactive power compensation based on a generalized theory of instantaneous reactive power for three-phase power systems. This new theory gives a generalized definition of instantaneous reactive power, which is valid for sinusoidal or nonsinusoidal and balanced or unbalanced three-phase power systems with or without zero-sequence currents and/or voltages. The properties and physical meanings of the newly defined instantaneous reactive power are discussed in detail. A harmonic and reactive power compensator based on the new theory for a three-phase harmonic-distorted power system with zero-sequence components in the load current and/or source voltage is then used as an example to show harmonic and reactive power measurement and compensation using the new theory. Simulation and experimental results are presented.

473 citations

Journal ArticleDOI
TL;DR: The data presented here extend the definition of the human microbiome by providing a more complete and accurate picture of human microbiome biogeography, addressing questions best answered by a large dataset of subjects and body sites that are deeply sampled by sequencing.
Abstract: Background Characterizing the biogeography of the microbiome of healthy humans is essential for understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats from 279 healthy humans.

473 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994