scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.
Abstract: We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the dev...

706 citations

Journal ArticleDOI
TL;DR: In this article, the authors show how carbon affects martensitic transformations in Ni-rich NiTi shape memory alloys and provide new experimental evidence for increasing temperature intervals between the start and the end of the martenitic transformations (from B2 to B19′) with increasing C content in as-cast and solution-annealed microstructures.

706 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the indentation size effect for pyramidal and spherical indenters can be correlated, based on geometrically necessary dislocations and work-hardening.
Abstract: Experimental results are presented which show that the indentation size effect for pyramidal and spherical indenters can be correlated. For a pyramidal indenter, the hardness measured in crystalline materials usually increases with decreasing depth of penetration, which is known as the indentation size effect. Spherical indentation also shows an indentation size effect. However, for a spherical indenter, hardness is not affected by depth, but increases with decreasing sphere radius. The correlation for pyramidal and spherical indenter shapes is based on geometrically necessary dislocations and work-hardening. The Nix and Gao indentation size effect model (J. Mech. Phys. Solids 46 (1998) 411) for conical indenters is extended to indenters of various shapes and compared to the experimental results.

706 citations

Journal ArticleDOI
TL;DR: In this article, a multi-year, multi-technique study was conducted to measure evapotranspiration and its components within an uneven-aged mixed deciduous forest in the Southeastern United States.

705 citations

Journal ArticleDOI
TL;DR: The genome sequence of R. palustris is described, which reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems.
Abstract: Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.

704 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994