scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the components of the surface energy balance were measured for three years over a broadleaved deciduous forest using the eddy covariance technique, and the most influential effect on annual fluxes was the occurrence and extent of drought, with lesser control exerted by differences in the timing of leaf expansion and leaf senescence.

439 citations

Journal ArticleDOI
TL;DR: In this article, a simple model is developed based on observations from finite element simulations of indentation of elastic-plastic materials by a rigid cone that provides a physical explanation for the behavior.
Abstract: Experiments have shown that nanoindentation unloading curves obtained with Berkovich triangular pyramidal indenters are usually welldescribed by the power-law relation P = α(h − hf)m, where hf is the final depth after complete unloading and α and m are material constants. However, the power-law exponent is not fixed at an integral value, as would be the case for elastic contact by a conical indenter (m = 2) or a flat circular punch (m = 1), but varies from material to material in the range m = 1.2–1.6. A simple model is developed based on observations from finite element simulations of indentation of elastic–plastic materials by a rigid cone that provides a physical explanation for the behavior. The model, which is based on the concept of an indenter with an “effective shape” whose geometry is determined by the shape of the plastic hardness impression formed during indentation, provides a means by which the material constants in the power law relation can be related to more fundamental material properties such as the elastic modulus and hardness. Simple arguments are presented from which the effective indenter shape can be derived from the pressure distribution under the indenter.

439 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize recent progress in dilute magnetic semiconductors (DMS) such as (Ga, Mn)N, (Ga and Mn)P, (Zn, Mn), O, and SiGeN2 exhibiting room temperature ferromagnetic properties.
Abstract: Existing semiconductor electronic and photonic devices utilize the charge on electrons and holes in order to perform their specific functionality such as signal processing or light emission. The relatively new field of semiconductor spintronics seeks, in addition, to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. The ability to control of spin injection, transport and detection leads to the potential for new classes of ultra-low power, high speed memory, logic and photonic devices. The utility of such devices depends on the availability of materials with practical (>300 K) magnetic ordering temperatures. In this paper, we summarize recent progress in dilute magnetic semiconductors (DMS) such as (Ga, Mn)N, (Ga, Mn)P, (Zn, Mn)O and (Zn, Mn)SiGeN2 exhibiting room temperature ferromagnetism, the origins of the magnetism and its potential applications in novel devices such as spin-polarized light emitters and spin field effect transistors.

438 citations

Journal ArticleDOI
Jean-Christophe Golaz1, Peter M. Caldwell1, Luke Van Roekel2, Mark R. Petersen2, Qi Tang1, Jonathan Wolfe2, G. W. Abeshu3, Valentine G. Anantharaj4, Xylar Asay-Davis2, David C. Bader1, Sterling Baldwin1, Gautam Bisht5, Peter A. Bogenschutz1, Marcia L. Branstetter4, Michael A. Brunke6, Steven R. Brus2, Susannah M. Burrows7, Philip Cameron-Smith1, Aaron S. Donahue1, Michael Deakin8, Michael Deakin9, Richard C. Easter7, Katherine J. Evans4, Yan Feng10, Mark Flanner11, James G. Foucar8, Jeremy Fyke2, Brian M. Griffin12, Cecile Hannay13, Bryce E. Harrop7, Mattthew J. Hoffman2, Elizabeth Hunke2, Robert Jacob10, Douglas W. Jacobsen2, Nicole Jeffery2, Philip W. Jones2, Noel Keen5, Stephen A. Klein1, Vincent E. Larson12, L. Ruby Leung7, Hongyi Li3, Wuyin Lin14, William H. Lipscomb2, William H. Lipscomb13, Po-Lun Ma7, Salil Mahajan4, Mathew Maltrud2, Azamat Mametjanov10, Julie L. McClean15, Renata B. McCoy1, Richard Neale13, Stephen Price2, Yun Qian7, Philip J. Rasch7, J. E. Jack Reeves Eyre6, William J. Riley5, Todd D. Ringler2, Todd D. Ringler16, Andrew Roberts2, Erika Louise Roesler8, Andrew G. Salinger8, Zeshawn Shaheen1, Xiaoying Shi4, Balwinder Singh7, Jinyun Tang5, Mark A. Taylor8, Peter E. Thornton4, Adrian K. Turner2, Milena Veneziani2, Hui Wan7, Hailong Wang7, Shanlin Wang2, Dean N. Williams1, Phillip J. Wolfram2, Patrick H. Worley4, Shaocheng Xie1, Yang Yang7, Jin-Ho Yoon17, Mark D. Zelinka1, Charles S. Zender18, Xubin Zeng6, Chengzhu Zhang1, Kai Zhang7, Yuying Zhang1, X. Zheng1, Tian Zhou7, Qing Zhu5 
TL;DR: Energy Exascale Earth System Model (E3SM) project as mentioned in this paper is a project of the U.S. Department of Energy that aims to develop and validate the E3SM model.
Abstract: Energy Exascale Earth System Model (E3SM) project - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; Climate Model Development and Validation activity - Office of Biological and Environmental Research in the US Department of Energy Office of Science; Regional and Global Modeling and Analysis Program of the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research; National Research Foundation [NRF_2017R1A2b4007480]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE Office of Science User Facility [DE-AC05-00OR22725]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE [DE-AC05-76RLO1830]; National Center for Atmospheric Research - National Science Foundation [1852977];[DE-SC0012778]

437 citations

Journal ArticleDOI
TL;DR: Two new chromatographic systems, designated RPC-5 and RPC-6, yield sharper separation of multiple isoaccepting tRNA's and less overlap of adjacent tRNA peaks, more applicable for preparatory-scale tRNA separations or identification of isoaccepted tRNA species.

437 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994