scispace - formally typeset
Search or ask a question
Institution

Oak Ridge National Laboratory

FacilityOak Ridge, Tennessee, United States
About: Oak Ridge National Laboratory is a facility organization based out in Oak Ridge, Tennessee, United States. It is known for research contribution in the topics: Neutron & Ion. The organization has 31868 authors who have published 73724 publications receiving 2633689 citations. The organization is also known as: ORNL.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey paper aims to offer a detailed overview of existing distributed optimization algorithms and their applications in power systems, and focuses on the application of distributed optimization in the optimal coordination of distributed energy resources.

468 citations

Journal ArticleDOI
TL;DR: This study reveals simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and intermolecular dipole interactions in the binding of acetylene and ethylene to give up to 12 individual weak supramolecular interactions aligned within the host to form an optimal geometry for the selective binding of hydrocarbons.
Abstract: Supramolecular interactions are fundamental to host-guest binding in chemical and biological processes. Direct visualisation of such supramolecular interactions within host-guest systems is extremely challenging but crucial for the understanding of their function. We report a comprehensive study combining neutron scattering with synchrotron X-ray and neutron diffraction, coupled with computational modelling, to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals the simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and inter-molecular dipole interactions in the binding of acetylene and ethylene to give up to twelve individual weak supramolecular interactions aligned within the host to form an optimal geometry for intelligent, selective binding of hydrocarbons. We also report, for the first time, the cooperative binding of a mixture of acetylene and ethylene within the porous host together with the corresponding breakthrough experiment and analysis of mixed gas adsorption isotherms.

468 citations

Journal ArticleDOI
TL;DR: In this paper, a comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times.
Abstract: The environmental costs and benefits of producing bioenergy crops can be measured both in terms of the relative effects on soil, water and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Department of Energy's Bioenegy Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass ( Panicum virgatum) . The choice of switchgrass as a model bioenergy species was based on its high yields, high nutrient use efficiency and wide geographic distribution. Another important consideration was its positive environmental attributes. The latter include its positive effects on soil quality and stability, its cover value for wildlife, and relatively low inputs of energy, water and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In addition potential reductions in CO 2 emissions, tied to the energetic efficiency of producing transportation fuels and replacing non-renewable petrochemical fuels with ethanol derived from grasses are very promising. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20–30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels. Current research is emphasizing quantification of changes in soil nutrients and soil organic matter to provide improved understanding of the long term changes in soil quality associated with annual removal of high yields of herbaceous energy crops.

467 citations

Journal ArticleDOI
TL;DR: This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments.
Abstract: Here, we report a catalytic beacon sensor for uranyl (UO22+) based on an in vitro-selected UO22+-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3′ quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5′ and 3′ ends, respectively. The presence of UO22+ causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of ≈230 μM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.

467 citations

Journal ArticleDOI
TL;DR: In this article, a dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed, which allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible.
Abstract: A dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed. This method allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible. This includes techniques with non-acoustic driving where the phase of the driving force is frequency and/or position dependent. An example of the latter is piezoresponse force microscopy (PFM), where the resonant frequency of the cantilever is strongly dependent on the contact stiffness of the tip–surface junction and the local mechanical properties, but the spatial variability of the drive phase rules out the use of a phase locked loop. Combined with high-voltage switching and imaging, dual-frequency, resonance-tracking PFM allows reliable studies of electromechanical and elastic properties and polarization dynamics in a broad range of inorganic and biological systems, and is illustrated using lead zirconate–titanate, rat tail collagen, and native and switched ferroelectric domains in lithium niobate.

467 citations


Authors

Showing all 32112 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
Bradley Cox1692150156200
Charles M. Lieber165521132811
Wei Li1581855124748
Joseph Jankovic153114693840
James M. Tiedje150688102287
Peter Lang140113698592
Andrew G. Clark140823123333
Josh Moss139101989255
Robert H. Purcell13966670366
Ad Bax13848697112
George C. Schatz137115594910
Daniel Thomas13484684224
Jerry M. Melillo13438368894
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

91% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022435
20213,177
20203,280
20192,990
20182,994