scispace - formally typeset
Search or ask a question

Showing papers by "Swedish Defence Research Agency published in 2011"


Journal ArticleDOI
TL;DR: The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous ( 131)I fraction to total (131)I, both on a spatial scale and its temporal variation.
Abstract: Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite dispersion and washout along the route of the contaminated air masses. In Europe, the first signs of the releases were detected 7 days later while the first peak of activity level was observed between March 28th and March 30th. Time variations over a 20-day period and spatial variations across more than 150 sampling locations in Europe made it possible to characterize the contaminated air masses. After the Chernobyl accident, only a few measurements of the gaseous (131)I fraction were conducted compared to the number of measurements for the particulate fraction. Several studies had already pointed out the importance of the gaseous (131)I and the large underestimation of the total (131)I airborne activity level, and subsequent calculations of inhalation dose, if neglected. The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous (131)I fraction to total (131)I, both on a spatial scale and its temporal variation. It can be pointed out that during the Fukushima event, the (134)Cs to (137)Cs ratio proved to be different from that observed after the Chernobyl accident. The data set provided in this paper is the most comprehensive survey of the main relevant airborne radionuclides from the Fukushima reactors, measured across Europe. A rough estimate of the total (131)I inventory that has passed over Europe during this period was <1% of the released amount. According to the measurements, airborne activity levels remain of no concern for public health in Europe.

334 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the energy use and greenhouse gas emissions associated with the production and transport to a port in Sweden (wholesale point) of 84 common food items of animal and vegetable origin.

293 citations


Journal ArticleDOI
TL;DR: Cooperative positioning, where first responders exchange position and error estimates in conjunction with performing radio based ranging, is deemed a key technology.
Abstract: A robust, accurate positioning system with seamless outdoor and indoor coverage is a highly needed tool for increasing safety in emergency response and military urban operations. It must be lightweight, small, inexpensive, and power efficient, and still provide meter-level accuracy during extended operations. GPS receivers, inertial sensors, and local radio-based ranging are natural choices for a multisensor positioning system. Inertial navigation with foot-mounted sensors is suitable as the core system in GPS denied environments, since it can yield meter-level accuracies for a few minutes. However, there is still a need for additional supporting sensors to keep the accuracy at acceptable levels during the duration of typical soldier and first responder operations. Suitable aiding sensors are three-axis magnetometers, barometers, imaging sensors, Doppler radars, and ultrasonic sensors. Further more, cooperative positioning, where first responders exchange position and error estimates in conjunction with performing radio based ranging, is deemed a key technology. This article provides a survey on technologies and concepts for high accuracy soldier and first responder positioning systems, with an emphasis on indoor positioning.

209 citations


Journal ArticleDOI
TL;DR: In this paper, the relation between polarimetric SAR backscatter measurements at low frequencies and forest biomass is investigated using data acquired within the BioSAR-I campaign in southern Sweden during 2007.

173 citations


Journal ArticleDOI
TL;DR: A method for conflict management within Dempster-Shafer theory is developed that each piece of evidence is discounted in proportion to the degree that it contributes to the conflict.

138 citations


Journal ArticleDOI
16 Jun 2011
TL;DR: In this paper, the influence of the degree of doping of PEDOT polymer on structural and optical parameters such as the reflectivity, absorbance, conductivity, dielectric function, refractive index and the energy-loss function is studied.
Abstract: The geometric and electronic structure of condensed phase organic conducting polymer PEDOT:PSS blends has been investigated by periodic density functional theory (DFT) calculations with a generalized-gradient approximation (GGA) functional, and a plane wave basis set. The influence of the degree of doping of the PEDOT polymer on structural and optical parameters such as the reflectivity, absorbance, conductivity, dielectric function, refractive index and the energy-loss function is studied. A flip from the benzoid to the quinoid structure is observed in the calculations when the neutral PEDOT is doped by negatively charged PSS. Also the optical properties are affected by the doping. In particular, the reflectivity was found to be very sensitive to the degree of doping, where higher doping implies higher reflectivity. The reflectivity is highly anisotropic, with the dominant contribution stemming from the direction parallel to the PEDOT polymer chain.

97 citations


Journal ArticleDOI
TL;DR: A simple and fast algorithm for the detection and generation of detection tracks in down range has been developed, based on moving target indication technique, which showed that wall reflections are the dominating wave propagation mechanism for producing target detections, while wave components transmitted through the walls could be neglected.
Abstract: Detection of moving objects concealed behind a concrete wall corner has been demonstrated, using Doppler-based techniques with a stepped-frequency radar centered at 10 GHz, in a reduced-scale model of a street scenario. Micro-Doppler signatures have been traced in the return from a human target, both for walking and for breathing. Separate material measurements of the reflection and transmission of the concrete in the wall have showed that wall reflections are the dominating wave propagation mechanism for producing target detections, while wave components transmitted through the walls could be neglected. Weaker detections have been made of target returns via diffraction in the wall corner. A simple and fast algorithm for the detection and generation of detection tracks in down range has been developed, based on moving target indication technique.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the design and characterization of single-chip 220 GHz heterodyne receiver and transmitter (RX) and TX) monolithic microwave integrated circuits with integrated antennas fabricated in 0.1-μm GaAs metamorphic high electron mobility transistor technology is presented.
Abstract: This paper presents the design and characterization of single-chip 220-GHz heterodyne receiver (RX) and transmitter (TX) monolithic microwave integrated circuits (MMICs) with integrated antennas fabricated in 0.1- μm GaAs metamorphic high electron-mobility transistor technology. The MMIC receiver consists of a modified square-slot antenna, a three-stage low-noise amplifier, and a sub-harmonically pumped resistive mixer with on-chip local oscillator frequency multiplication chain. The transmitter chip is the dual of the receiver chip by inverting the direction of the RF amplifier. The chips are mounted on 5-mm silicon lenses in order to interface the antenna to the free space and are packaged into two separate modules.

88 citations


Journal ArticleDOI
01 Jan 2011
TL;DR: In this paper, the HyShot II scramjet combustor was analyzed in the High Enthalpy Shock Tunnel Gottingen (HEG) by using Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) models with detailed and reduced chemistry.
Abstract: The development of novel air-breathing engines such as supersonic combustion ramjets (scramjets) depends on the understanding of supersonic mixing, self-ignition and combustion. These aerothermochemical processes occur together in a scramjet engine and are notoriously difficult to understand. In the present study, we aim at analyzing the HyShot II scramjet combustor mounted in the High Enthalpy Shock Tunnel Gottingen (HEG) by using Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) models with detailed and reduced chemistry. To account for the complicated flow in the HEG facility a zonal approach is adopted in which RANS is used to simulate the flow in the HEG nozzle and test-section, providing the necessary inflow boundary conditions for more detailed RANS and LES of the reacting flow in the HyShot combustor. Comparison of predicted wall pressures and heat fluxes with experimental data show good agreement, and in particular does the LES agree well with the experimental data. The LES results are used to elucidate the flow, mixing, self-ignition and subsequent combustion processes in the combustor. The combustor flow can be separated into the mixing zone, in which turbulent mixing from the jet-in-cross flow injectors dominates, the self-ignition zone, in which self-ignition rapidly takes place, and the turbulent combustion zone, located towards the end of the combustor, in which most of the heat release and volumetric expansion takes place. Self-ignition occurs at some distance downstream of the injectors, resulting in a distinct pressure rise further downstream due to the volumetric expansion as observed in the experiments. The jet penetration is about 30% of the combustor height and the combustion efficiency is found to be around 83%.

86 citations


Journal ArticleDOI
TL;DR: In this article, the organic fraction in PM 2.5 and PM 10 was analyzed for twenty n-alkanes, fifteen polycyclic aromatic hydrocarbons (PAHs) and eighteen oxygenated PAHs (oxy-PAH) in urban locations in Kabul and Mazar-e Sharif.

76 citations


Proceedings ArticleDOI
24 Jul 2011
TL;DR: A shadow detection method combining hyperspectral and LIDAR data analysis is presented, using an estimate of the position of the sun at the time of image acquisition to computed a rough shadow image through line-of-sight analysis on a Digital Surface Model.
Abstract: In this paper, a shadow detection method combining hyperspectral and LIDAR data analysis is presented. First, a rough shadow image is computed through line-of-sight analysis on a Digital Surface Model (DSM), using an estimate of the position of the sun at the time of image acquisition. Then, large shadow and non-shadow areas in that image are detected and used for training a supervised classifier (a Support Vector Machine, SVM) that classifies every pixel in the hyperspectral image as shadow or non-shadow. Finally, small holes are filled through image morphological analysis. The method was tested on data including a 24 band hyperspectral image in the VIS/NIR domain (50 cm spatial resolution) and a DSM of 25 cm resolution. The results were in good accordance with visual interpretation. As the line-of-sight analysis step is only used for training, geometric mismatches (about 2 m) between LIDAR and hyperspectral data did not affect the results significantly, nor did uncertainties regarding the position of the sun.

Journal ArticleDOI
TL;DR: In this paper, a low Reynolds number (LRN) formulation based on the Partially Averaged Navier-Stokes (PANS) modelling method is presented, which incorporates improved asymptotic representation in near-wall turbulence modelling.

Journal ArticleDOI
TL;DR: A Raman multispectral imaging technique is presented, which can be used for stand-off detection of single explosives particles and makes it possible to detect even single particles when compared to known spectra for possible explosives.
Abstract: A Raman multispectral imaging technique is presented, which can be used for stand-off detection of single explosives particles. A frequency-doubled Nd:YAG laser operating at 10 Hz illuminates the surface under investigation. The backscattered Raman signal is collected by a receiver subsystem consisting of a 150 mm Schmidt-Cassegrain telescope, a laser line edge filter, a liquid-crystal tunable filter, and a gated intensified charge-coupled device (ICCD) detector. A sequence of images is recorded by the ICCD, where, for each recording, a different wavelength is selected by the tunable filter. By this, a Raman spectrum is recorded for each pixel, which makes it possible to detect even single particles when compared to known spectra for possible explosives. The comparison is made using correlation and least-square fitting. The system is relatively insensitive to environment and light variations. Multispectral Raman images of sulfur, ammonium nitrate, 2,4-dinitrotoluene, and 2,4,6-trinitrotoluene were acquired at a stand-off distance of 10 m. Detection of sulfur particles was done at a distance of 10 m.

Journal ArticleDOI
TL;DR: The results indicate that diverse F. tularensis-like organisms, including F. Tularensis subsp.
Abstract: Tularemia, caused by the bacterium Francisella tularensis, where F. tularensis subspecies holarctica has long been the cause of endemic disease in parts of northern Sweden. Despite this, our understanding of the natural life-cycle of the organism is still limited. During three years, we collected surface water samples (n = 341) and sediment samples (n = 245) in two areas in Sweden with endemic tularemia. Real-time PCR screening demonstrated the presence of F. tularenis lpnA sequences in 108 (32%) and 48 (20%) of the samples, respectively. The 16S rRNA sequences from those samples all grouped to the species F. tularensis. Analysis of the FtM19InDel region of lpnA-positive samples from selected sampling points confirmed the presence of F. tularensis subspecies holarctica-specific sequences. These sequences were detected in water sampled during both outbreak and nonoutbreak years. Our results indicate that diverse F. tularensis-like organisms, including F. tularensis subsp. holarctica, persist in natural waters and sediments in the investigated areas with endemic tularemia.

Proceedings Article
13 Oct 2011
TL;DR: Using a 77 GHz radar, the micro-Doppler signatures of one or two persons with different ways of movement, different movement directions and without or with carrying objects are obtained and properties to use when designing detectors and classifiers of human targets are suggested.
Abstract: Radar micro-Doppler signatures can be utilized for security applications like detection and assessment of human activity at airports, power plants etc. The micro-Doppler signature reflects the movement of various body parts. Using a 77 GHz radar we have obtained human micro-Doppler signatures of one or two persons, with different ways of movement, different movement directions and without or with carrying objects. We have analyzed the micro-Doppler signatures for these cases and we observe general properties of the signatures. We further suggest properties to use when designing detectors and classifiers of human targets.

Journal ArticleDOI
30 Nov 2011-PLOS ONE
TL;DR: The results show that docking-assisted structure-based design of AChE inhibitors is challenging and requires crystallographic support to obtain reliable results, at least with currently available software.
Abstract: Acetylcholinesterase (AChE) is an essential enzyme that terminates cholinergic transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Compounds inhibiting this enzyme can be used (inter alia) to treat cholinergic deficiencies (e.g. in Alzheimer's disease), but may also act as dangerous toxins (e.g. nerve agents such as sarin). Treatment of nerve agent poisoning involves use of antidotes, small molecules capable of reactivating AChE. We have screened a collection of organic molecules to assess their ability to inhibit the enzymatic activity of AChE, aiming to find lead compounds for further optimization leading to drugs with increased efficacy and/or decreased side effects. 124 inhibitors were discovered, with considerable chemical diversity regarding size, polarity, flexibility and charge distribution. An extensive structure determination campaign resulted in a set of crystal structures of protein-ligand complexes. Overall, the ligands have substantial interactions with the peripheral anionic site of AChE, and the majority form additional interactions with the catalytic site (CAS). Reproduction of the bioactive conformation of six of the ligands using molecular docking simulations required modification of the default parameter settings of the docking software. The results show that docking-assisted structure-based design of AChE inhibitors is challenging and requires crystallographic support to obtain reliable results, at least with currently available software. The complex formed between C5685 and Mus musculus AChE (C5685•mAChE) is a representative structure for the general binding mode of the determined structures. The CAS binding part of C5685 could not be structurally determined due to a disordered electron density map and the developed docking protocol was used to predict the binding modes of this part of the molecule. We believe that chemical modifications of our discovered inhibitors, biochemical and biophysical characterization, crystallography and computational chemistry provide a route to novel AChE inhibitors and reactivators.

Journal ArticleDOI
01 Mar 2011-Fuel
TL;DR: In this article, the influence of pure oxygenated fuels on exhaust emissions of carbonyls (aldehydes and ketones) and regulated emissions, i.e., hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ).

Journal ArticleDOI
TL;DR: In this article, a socio-technical approach is proposed for the analysis of energy systems in an efficiency context, including end-use technologies and the production of service demanded by a human activity system.
Abstract: Increasing energy efficiency has for a long time been identified as an important means of mitigating climate change. However, the full potential for technical energy efficiency has seldom been fully exploited. The traditional approach in energy systems analysis and policy is still largely supply-orientated, i.e. focusing on the management of energy conversion, production and distribution, and final use of energy in the form of energy carriers. This paper contributes to previous discussions on how to highlight and explore the user side in the analysis of energy systems in an efficiency context. The energy usage systems approach, including end-use technologies and the production of service demanded by a human activity system, is used to promote a dynamic bottom-up perspective on energy. In determining the possible potential for change by increasing energy efficiency, the demand for energy should not be considered synonymous with the demand for neither energy carriers, nor the measurable service volumes (such as kilometres travelled, square metre conditioned space, etc.), without considering the sociocultural context in which the service is being used or called upon. In summary, the predominant paradigm dealing with the energy system as a technical system managing resources and providing energy carriers should thus be complemented with the view of a socio-technical system facilitating and/or managing the services.

Journal ArticleDOI
TL;DR: The PglA protein-targeting oligosaccharyltransferase is definitively identified by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency in Escherichia coli.
Abstract: Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-Hex-Hex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus.


Journal ArticleDOI
TL;DR: Higher levels of inflammatory markers are independently associated with depressive symptoms in HF patients, even after correcting for disease severity, and there is no clear relationship between inflammation at baseline and depressive symptoms during the 18 months of follow-up.

Journal ArticleDOI
TL;DR: Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp), and in this focused review, recent findings regarding this system in the pathogenesis of tularemia are summarized.
Abstract: Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp), and in this focused review we summarize recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaptation to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.

Journal ArticleDOI
TL;DR: A smoking-induced expansion of predominantly activated airway helper T cells that seem to persist after COPD development is suggested, suggesting a predominantly non-regulatory CD25+ helper T-cell population in smokers and stable COPD.
Abstract: Regulatory T cells have been implicated in the pathogenesis of COPD by the increased expression of CD25 on helper T cells along with enhanced intracellular expression of FoxP3 and low/absent CD127 expression on the cell surface. Regulatory T cells were investigated in BALF from nine COPD subjects and compared to fourteen smokers with normal lung function and nine never-smokers. In smokers with normal lung function, the expression of CD25+CD4+ was increased, whereas the proportions of FoxP3+ and CD127+ were unchanged compared to never-smokers. Among CD4+ cells expressing high levels of CD25, the proportion of FoxP3+ cells was decreased and the percentage of CD127+ was increased in smokers with normal lung function. CD4+CD25+ cells with low/absent CD127 expression were increased in smokers with normal lung function, but not in COPD, when compared to never smokers. The reduction of FoxP3 expression in BALF from smokers with normal lung function indicates that the increase in CD25 expression is not associated with the expansion of regulatory T cells. Instead, the high CD127 and low FoxP3 expressions implicate a predominantly non-regulatory CD25+ helper T-cell population in smokers and stable COPD. Therefore, we suggest a smoking-induced expansion of predominantly activated airway helper T cells that seem to persist after COPD development.

Journal ArticleDOI
TL;DR: It was demonstrated that FSC200 and LVS expressed higher levels of gene transcripts related to iron uptake and storage than SCHU S4 did, and this likely explained their high iron content, which may be an important factor for the higher virulence of this subspecies of F. tularensis.
Abstract: Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is classified as a category A select agent and a facultative intracellular bacterium. Why F. tularensis subsp. tularensis causes a more severe form of tularemia than F. tularensis subsp. holarctica does is not known. In this study, we have identified prominent phenotypic differences between the subspecies, since we found that F. tularensis subsp. tularensis strains contained less iron than F. tularensis subsp. holarctica strains. Moreover, strain SCHU S4 of F. tularensis subsp. tularensis was less susceptible than FSC200 and the live vaccine strain (LVS) of F. tularensis subsp. holarctica to H2O2-induced killing. The activity of the H2O2-degrading enzyme catalase was similar between the strains, whereas the iron content affected their susceptibility to H2O2, since iron starvation rendered F. tularensis subsp. holarctica strains more resistant to H2O2. Complementing LVS with fupA, which encodes an important virulence factor that regulates iron uptake, reduced its iron content and increased the resistance to H2O2-mediated killing. By real-time PCR, it was demonstrated that FSC200 and LVS expressed higher levels of gene transcripts related to iron uptake and storage than SCHU S4 did, and this likely explained their high iron content. Together, the results suggest that F. tularensis subsp. tularensis strains have restricted iron uptake and storage, which is beneficial for their resistance to H2O2-induced killing. This may be an important factor for the higher virulence of this subspecies of F. tularensis, as reactive oxygen species, such as H2O2, are important bactericidal components during tularemia.

Journal ArticleDOI
TL;DR: In this article, a comprehensive analysis of the Ramanspectra of pure and zirconium-doped anatase TiO2 nanoparticles is presented, which accounts for the wavenumber shifts of the Eg(ν6)mode as a function of particle size.
Abstract: We present a comprehensive analysis of the Ramanspectra of pure and zirconium-doped anatase TiO2 nanoparticles. To accountfor the wavenumber shifts of the Eg(ν6)mode as a function of particle size ...

Journal ArticleDOI
TL;DR: In this paper, composites of ferrite nanoparticles with 3-glycidoxypropyl- (GPTMS), aminopropyl(APTMS), or methyl-silsesquioxane (MTMS) coatings are reported.
Abstract: Epoxy-based composites of ferrite nanoparticles (50 nm) with 3-glycidoxypropyl- (GPTMS), aminopropyl(APTMS), or methyl-silsesquioxane (MTMS) coatings are reported. The GPTMS coatings (30-nm thick) ...

Proceedings ArticleDOI
19 Mar 2011
TL;DR: The parameter estimation variance of the Single Point Active Alignment Method (SPAAM) is studied through an experiment where 11 subjects are instructed to create alignments using an Optical See-Through Head Mounted Display such that three separate correspondence point distributions are acquired.
Abstract: The parameter estimation variance of the Single Point Active Alignment Method (SPAAM) is studied through an experiment where 11 subjects are instructed to create alignments using an Optical See-Through Head Mounted Display (OSTHMD) such that three separate correspondence point distributions are acquired. Modeling the OSTHMD and the subject's dominant eye as a pinhole camera, findings show that a correspondence point distribution well distributed along the user's line of sight yields less variant parameter estimates. The estimated eye point location is studied in particular detail. The findings of the experiment are complemented with simulated data which show that image plane orientation is sensitive to the number of correspondence points. The simulated data also illustrates some interesting properties on the numerical stability of the calibration problem as a function of alignment noise, number of correspondence points, and correspondence point distribution.

Journal ArticleDOI
TL;DR: Engagement of T lymphocytes, particularly the γδ T cell subset, was crucial both for the acute cytokine and neutrophil response and for the late-phase lung fibrosis as indicated by the lack of response in γ Δ T cell deficient mice.

Journal ArticleDOI
TL;DR: A role for CCR7 is suggested in the development of pulmonary arterial hypertension, at least in some subgroups, possibly via pulmonary infiltration of lymphocytes and secretion of interleukin-12 and CX3CL1.
Abstract: The chemokine receptor CCR7 regulates lymphocyte trafficking, and CCR7 deficiency induces infiltration of T and B cells adjacent to vessels in mouse lungs. Perivascular infiltration of T and B cells has also been found in human pulmonary arterial hypertension, and downregulation of the CCR7 receptor in circulating leukocytes of such patients has been observed. To investigate whether changes in the CCR7 system contribute to the pathogenesis of pulmonary hypertension, we utilized mice deficient of the CCR7 receptor. The cardiopulmonary and inflammatory responses of CCR7 depletion were evaluated in CCR7-deficient and wild-type mice. Measurements of cytokines upregulated in the animal model were also performed in patients with pulmonary hypertension and controls and in vascular smooth muscle cells. We found that mice lacking CCR7 had increased right ventricular systolic pressure, reduced pulmonary artery acceleration time, increased right ventricular/tibial length ratio, Rho kinase-mediated pulmonary vasoconstriction, and increased muscularization of distal arteries, indicating pulmonary hypertension. These mice also showed increased perivascular infiltration of leukocytes, consisting mainly of T and B cells, and increased mRNA levels of the inflammatory cytokines interleukin-12 and CX3CL1 within pulmonary tissue. Increased serum levels of interleukin-12 and CX3CL1 were also observed in patients with pulmonary hypertension, particularly in those with pulmonary hypertension associated with connective tissue disorder. In smooth muscle cells, interleukin-12 induced secretion of the angiogenic cytokine interleukin-8. We conclude that these results suggest a role for CCR7 in the development of pulmonary arterial hypertension, at least in some subgroups, possibly via pulmonary infiltration of lymphocytes and secretion of interleukin-12 and CX3CL1.

Journal ArticleDOI
TL;DR: In this article, a proof-of-concept of a polymer cure system based on hyperbranched copolymers of 3-ethyl-3-(hydroxymethyl)oxetane (TMPO) and THF (THF) was presented.
Abstract: To enable future environmentally friendly access to space by means of solid rocket propulsion a viable replacement to the toxic ammonium perchlorate (AP) oxidizer is needed. Ammonium dinitramide (ADN) holds great promise as a green replacement. Unfortunately compatibility issues with many polymer binder systems have hampered the development of ADN-based formulations. Herein we present proof-of-concept of a polymer cure system based on hyperbranched copolymers of 3-ethyl-3-(hydroxymethyl)oxetane (TMPO) and THF (THF). The partly alkyne-functionalized macromols. were synthesized in a one-pot procedure. TMPO and THF are found to polymerize in exact ratios, indicating a kinetically controlled buildup of nonrandom compn. copolymers. Several of the materials show excellent compatibility with ADN, and rapid curing of the energetic polyglycidyl azide polymer (GAP) have been demonstrated through 1,3-dipolar cycloaddn. at 75°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011. [on SciFinder(R)]