scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors propose a new engineering discipline for producers toward sustainable production and consumption, Service Engineering (SE), where positive and negative changes of consumers are modelled as value and cost, respectively.

375 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the processing, microstructure development, and resulting mechanical properties of Zr-, Ti-, Cu-, Mg-, Fe-, and Ni-based glassy alloys and also consider the superiority of composite materials containing different phases for enhancing the strength, ductility, and toughness.
Abstract: The development of bulk metallic glasses and composites for improving the mechanical properties has occurred with the discovery of many ductile metallic glasses and glass matrix composites with second phase dispersions with different length scales. This article reviews the processing, microstructure development, and resulting mechanical properties of Zr-, Ti-, Cu-, Mg-, Fe-, and Ni-based glassy alloys and also considers the superiority of composite materials containing different phases for enhancing the strength, ductility, and toughness, even leading to a “work-hardening-like” behavior. The morphology, shape, and length scale of the second phase dispersions are crucial for the delocalization of shear bands. The article concludes with some comments regarding future directions of the investigations of spatially inhomogeneous metallic glasses.

373 citations

Journal ArticleDOI
TL;DR: In this paper, the size, aspect ratio and chemical composition of more than 22,000 individual particles were studied by scanning electron microscopy and optical particle spectrometer, and the average aspect ratio of the particles was 1.64.

373 citations

Proceedings ArticleDOI
12 Oct 2005
TL;DR: This paper presents a systematic analysis of features computed from a real-world data set and shows how the choice of feature and the window length over which the feature is computed affects the recognition rates for different activities.
Abstract: Human activity is one of the most important ingredients of context information. In wearable computing scenarios, activities such as walking, standing and sitting can be inferred from data provided by body-worn acceleration sensors. In such settings, most approaches use a single set of features, regardless of which activity to be recognized. In this paper we show that recognition rates can be improved by careful selection of individual features for each activity. We present a systematic analysis of features computed from a real-world data set and show how the choice of feature and the window length over which the feature is computed affects the recognition rates for different activities. Finally, we give a recommendation of suitable features and window lengths for a set of common activities.

373 citations

Journal ArticleDOI
10 Mar 2021-Nature
TL;DR: In this article, a 6metre-long, 25-centimetre-wide display textile containing 5 × 105 electroluminescent units spaced approximately 800 micrometres apart was constructed using conductive weft and luminescent warp fibres.
Abstract: Displays are basic building blocks of modern electronics1,2. Integrating displays into textiles offers exciting opportunities for smart electronic textiles—the ultimate goal of wearable technology, poised to change the way in which we interact with electronic devices3–6. Display textiles serve to bridge human–machine interactions7–9, offering, for instance, a real-time communication tool for individuals with voice or speech difficulties. Electronic textiles capable of communicating10, sensing11,12 and supplying electricity13,14 have been reported previously. However, textiles with functional, large-area displays have not yet been achieved, because it is challenging to obtain small illuminating units that are both durable and easy to assemble over a wide area. Here we report a 6-metre-long, 25-centimetre-wide display textile containing 5 × 105 electroluminescent units spaced approximately 800 micrometres apart. Weaving conductive weft and luminescent warp fibres forms micrometre-scale electroluminescent units at the weft–warp contact points. The brightness between electroluminescent units deviates by less than 8 per cent and remains stable even when the textile is bent, stretched or pressed. Our display textile is flexible and breathable and withstands repeated machine-washing, making it suitable for practical applications. We show that an integrated textile system consisting of display, keyboard and power supply can serve as a communication tool, demonstrating the system’s potential within the ‘internet of things’ in various areas, including healthcare. Our approach unifies the fabrication and function of electronic devices with textiles, and we expect that woven-fibre materials will shape the next generation of electronics. A large electronic display textile that is flexible, breathable and withstands repeated machine-washing is integrated with a keyboard and power supply to create a wearable, durable communication tool.

372 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493