scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes, which suggests higher tolerance against extinctions in tropical than in temperate communities.

295 citations

Journal ArticleDOI
TL;DR: A classification of problem variants is proposed, and concise paper excerpts that convey the central ideas of each work are provided, to discuss recent developments in the field and list promising topics for further research.

294 citations

Journal ArticleDOI
TL;DR: In this paper, a broad overview of thermographic phosphor film preparation techniques is presented and an entire error analysis is given for this technique, which may sensitise future studies for error sources and encourage an estimation of their total accuracy.

292 citations

Journal ArticleDOI
TL;DR: This paper proposes a non-hierarchical, negotiation-based scheme which can be used to synchronize plans between two independent supply chain partners linked by material flows and shows how modified versions of these models can be utilized for evaluating material orders or supplies proposed by the supply chain partner and for generating counter-proposals.

291 citations

Journal ArticleDOI
TL;DR: In this article, a simple hydraulic theory is generalized to model quasi-two-dimensional flows around obstacles and compared with laboratory experiments, which indicate that the theory is adequate to quantitatively describe the formation of normal shocks, oblique shocks, dead zones and granular vacua.
Abstract: Shock waves, dead zones and particle-free regions form when a thin surface avalanche of granular material flows around an obstacle or over a change in the bed topography. Understanding and modelling these flows is of considerable practical interest for industrial processes, as well as for the design of defences to protect buildings, structures and people from snow avalanches, debris flows and rockfalls. These flow phenomena also yield useful constitutive information that can be used to improve existing avalanche models. In this paper a simple hydraulic theory, first suggested in the Russian literature, is generalized to model quasi-two-dimensional flows around obstacles. Exact and numerical solutions are then compared with laboratory experiments. These indicate that the theory is adequate to quantitatively describe the formation of normal shocks, oblique shocks, dead zones and granular vacua. Such features are generated by the flow around a pyramidal obstacle, which is typical of some of the defensive structures in use today.

291 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493