scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of various available technologies to recover the rare-earth elements (REEs) from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery.
Abstract: NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice.

329 citations

Journal Article
TL;DR: Natural Evolution Strategies (NES) as mentioned in this paper is a family of black-box optimization algorithms that use the natural gradient to update a parameterized search distribution in the direction of higher expected fitness.
Abstract: This paper presents Natural Evolution Strategies (NES), a recent family of black-box optimization algorithms that use the natural gradient to update a parameterized search distribution in the direction of higher expected fitness. We introduce a collection of techniques that address issues of convergence, robustness, sample complexity, computational complexity and sensitivity to hyperparameters. This paper explores a number of implementations of the NES family, such as general-purpose multi-variate normal distributions and separable distributions tailored towards search in high dimensional spaces. Experimental results show best published performance on various standard benchmarks, as well as competitive performance on others.

329 citations

Journal ArticleDOI
TL;DR: It is proposed that ionizing-radiation induced foci (IRIF) spatially concentrate ATM activity to promote localized alterations in regions of chromatin otherwise inhibitory to repair.
Abstract: DNA double-strand breaks (DSBs) trigger ATM (ataxia telangiectasia mutated) signalling and elicit genomic rearrangements and chromosomal fragmentation if misrepaired or unrepaired. Although most DSB repair is ATM-independent, ~15% of ionizing radiation (IR)-induced breaks persist in the absence of ATM-signalling1. 53BP1 (p53-binding protein 1) facilitates ATM-dependent DSB repair but is largely dispensable for ATM activation or checkpoint arrest. ATM promotes DSB repair within heterochromatin by phosphorylating KAP-1 (KRAB-associated protein 1, also known as TIF1β, TRIM28 or KRIP-1; ref. 2). Here, we show that the ATM signalling mediator proteins MDC1, RNF8, RNF168 and 53BP1 are also required for heterochromatic DSB repair. Although KAP-1 phosphorylation is critical for 53BP1-mediated repair, overall phosphorylated KAP-1 (pKAP-1) levels are only modestly affected by 53BP1 loss. pKAP-1 is transiently pan-nuclear but also forms foci overlapping with γH2AX in heterochromatin. Cells that do not form 53BP1 foci, including human RIDDLE (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties) syndrome cells, fail to form pKAP-1 foci. 53BP1 amplifies Mre11–NBS1 accumulation at late-repairing DSBs, concentrating active ATM and leading to robust, localized pKAP-1. We propose that ionizing-radiation induced foci (IRIF) spatially concentrate ATM activity to promote localized alterations in regions of chromatin otherwise inhibitory to repair.

328 citations

Journal ArticleDOI
TL;DR: It is found that the interaction strength between a pair of species is predicted well by simple functions of the two species' biomasses and the body mass of the species removed, and prediction accuracy increases with network size, suggesting that greater web complexity simplifies predicting interaction strengths.
Abstract: Darwin's classic image of an “entangled bank” of interdependencies among species has long suggested that it is difficult to predict how the loss of one species affects the abundance of others. We show that for dynamical models of realistically structured ecological networks in which pair-wise consumer-resource interactions allometrically scale to the ¾ power—as suggested by metabolic theory—the effect of losing one species on another can be predicted well by simple functions of variables easily observed in nature. By systematically removing individual species from 600 networks ranging from 10–30 species, we analyzed how the strength of 254,032 possible pair-wise species interactions depended on 90 stochastically varied species, link, and network attributes. We found that the interaction strength between a pair of species is predicted well by simple functions of the two species' biomasses and the body mass of the species removed. On average, prediction accuracy increases with network size, suggesting that greater web complexity simplifies predicting interaction strengths. Applied to field data, our model successfully predicts interactions dominated by trophic effects and illuminates the sign and magnitude of important nontrophic interactions.

327 citations

Journal ArticleDOI
TL;DR: In this paper, stable isotope ratios (15N/14N) in a diverse group of soil microarthropods, oribatid mites, were evaluated to evaluate trophic niche differentiation.
Abstract: The large number of animals that coexist in soil without any clear niche differentiation has puzzled biologists for a long time. We investigated stable isotope ratios (15N/14N) in a diverse group of soil microarthropods, oribatid mites, to evaluate trophic niche differentiation. The natural variation of the stable isotopes 15N/14N was measured in 36 species/taxa from four beech and beech-oak forests. Signatures of δ15N formed a gradient spanning over 12 δ units suggesting that (a) different species occupy different trophic niches and (b) oribatid mites span three to four trophic levels. This study for the first time documented strong trophic niche differentiation in decomposer microarthropods. The results suggest that trophic niche differentiation within taxonomic groups significantly contributes to the high diversity of soil animal taxa.

327 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493