scispace - formally typeset
Search or ask a question
Institution

University of Groningen

EducationGroningen, Groningen, Netherlands
About: University of Groningen is a education organization based out in Groningen, Groningen, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 36346 authors who have published 69116 publications receiving 2940370 citations. The organization is also known as: Rijksuniversiteit Groningen & RUG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the kinetics of low-pressure methanol synthesis, starting from CO, CO2 and hydrogen over a commercial Cu-Zn-Al catalyst, were studied in a spinning basket reactor at p = 15-50 bar and T = 210-245°C.

420 citations

Journal ArticleDOI
TL;DR: A formal, mathematical model of argument structure and evaluation is presented, taking seriously the procedural and dialogical aspects of argumentation, using premise types to capture the varying effect on the burden of proof of different kinds of questions.

420 citations

Journal ArticleDOI
TL;DR: In this paper, a review of more than 60 studies (plus m4ore than 65 studies on P2G) on power and energy models based on simulation and optimization was done, based on these, for power systems with up to 95% renewables, the electricity storage size is found to be below 1.5% of the annual demand (in energy terms).
Abstract: A review of more than 60 studies (plus m4ore than 65 studies on P2G) on power and energy models based on simulation and optimization was done. Based on these, for power systems with up to 95% renewables, the electricity storage size is found to be below 1.5% of the annual demand (in energy terms). While for 100% renewables energy systems (power, heat, mobility), it can remain below 6% of the annual energy demand. Combination of sectors and diverting the electricity to another sector can play a large role in reducing the storage size. From the potential alternatives to satisfy this demand, pumped hydro storage (PHS) global potential is not enough and new technologies with a higher energy density are needed. Hydrogen, with more than 250 times the energy density of PHS is a potential option to satisfy the storage need. However, changes needed in infrastructure to deal with high hydrogen content and the suitability of salt caverns for its storage can pose limitations for this technology. Power to Gas (P2G) arises as possible alternative overcoming both the facilities and the energy density issues. The global storage requirement would represent only 2% of the global annual natural gas production or 10% of the gas storage facilities (in energy equivalent). The more options considered to deal with intermittent sources, the lower the storage requirement will be. Therefore, future studies aiming to quantify storage needs should focus on the entire energy system including technology vectors (e.g. Power to Heat, Liquid, Gas, Chemicals) to avoid overestimating the amount of storage needed.

420 citations

Journal ArticleDOI
TL;DR: It is shown how a set of species turnover indices provide more information content regarding temporal trends in biodiversity, as they reflect how dominance and identity shift in communities over time, and several limitations of species richness as a metric of biodiversity change are summarized.
Abstract: Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is far from trivial, however, as recently documented by meta-analyses, which report little if any net change in local species richness through time. Here, we summarise several limitations of species richness as a metric of biodiversity change and show that the expectation of directional species richness trends under changing conditions is invalid. Instead, we illustrate how a set of species turnover indices provide more information content regarding temporal trends in biodiversity, as they reflect how dominance and identity shift in communities over time. We apply these metrics to three monitoring datasets representing different ecosystem types. In all datasets, nearly complete species turnover occurred, but this was disconnected from any species richness trends. Instead, turnover was strongly influenced by changes in species presence (identities) and dominance (abundances). We further show that these metrics can detect phases of strong compositional shifts in monitoring data and thus identify a different aspect of biodiversity change decoupled from species richness. Synthesis and applications: Temporal trends in species richness are insufficient to capture key changes in biodiversity in changing environments. In fact, reductions in environmental quality can lead to transient increases in species richness if immigration or extinction has different temporal dynamics. Thus, biodiversity monitoring programmes need to go beyond analyses of trends in richness in favour of more meaningful assessments of biodiversity change.

420 citations

Journal ArticleDOI
01 Nov 1997-Synapse
TL;DR: It is concluded that synaptic transmission of GABA and glutamate is strictly compartmentalized and as a result, these amino acids can hardly leak out of the synaptic cleft and reach the extracellular space where the dialysis probe samples.
Abstract: Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the vesicular origin of the amino acids in dialysates. Glial metabolism or reversal of the (re)uptake sites has been suggested to be responsible for the pool of nonexocytotically released amino-acid transmitters that seem to predominate over the neuronal exocytotic pool. The origin of extracellular GABA and glutamate levels and, as a consequence, the implications of changes in these levels upon manipulations are therefore obscure. This review critically analyzes what microdialysis data signify, i.e., whether amino-acid neurotransmitters sampled by microdialysis represent synaptic release, carrier-mediated release, or glial metabolism. The basal levels of GABA and glutamate are virtually tetrodotoxin- and calcium-independent. Given the fact that evidence for nonexocytotic release mediated by reversal of the uptake sites as a release mechanism relevant for normal neurotransmission is so far limited to conditions of "excessive stimulation," basal levels most likely reflect a nonneuronal pool of amino acids. Extracellular GABA and glutamate concentrations can be enhanced by a wide variety of pharmacological and physiological manipulations. However, it is presently impossible to ascertain that the stimulated GABA and glutamate in dialysates are of neuronal origin. On the other hand, under certain stimulatory conditions, increases in amino-acid transmitters can be obtained in the presence of tetrodotoxin, again suggesting that aspecific factors not directly related to neurotransmission underlie these changes in extracellular levels. It is concluded that synaptic transmission of GABA and glutamate is strictly compartmentalized and as a result, these amino acids can hardly leak out of the synaptic cleft and reach the extracellular space where the dialysis probe samples.

418 citations


Authors

Showing all 36692 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas J. Wareham2121657204896
André G. Uitterlinden1991229156747
Lei Jiang1702244135205
Brenda W.J.H. Penninx1701139119082
Richard H. Friend1691182140032
Panos Deloukas162410154018
Jerome I. Rotter1561071116296
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Scott T. Weiss147102574742
Dieter Lutz13967167414
Wilmar B. Schaufeli13751395718
Cisca Wijmenga13666886572
Arnold B. Bakker135506103778
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

98% related

Utrecht University
139.3K papers, 6.2M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

University College London
210.6K papers, 9.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022543
20214,487
20203,990
20193,283
20182,836