scispace - formally typeset
Search or ask a question
Institution

University of Groningen

EducationGroningen, Groningen, Netherlands
About: University of Groningen is a education organization based out in Groningen, Groningen, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 36346 authors who have published 69116 publications receiving 2940370 citations. The organization is also known as: Rijksuniversiteit Groningen & RUG.


Papers
More filters
Journal ArticleDOI
01 Jun 2010
TL;DR: To describe the system's ability for reaching consensus, a new concept about the generalized algebraic connectivity is defined for strongly connected networks and then extended to the strongly connected components of the directed network containing a spanning tree.
Abstract: This paper considers a second-order consensus problem for multiagent systems with nonlinear dynamics and directed topologies where each agent is governed by both position and velocity consensus terms with a time-varying asymptotic velocity. To describe the system's ability for reaching consensus, a new concept about the generalized algebraic connectivity is defined for strongly connected networks and then extended to the strongly connected components of the directed network containing a spanning tree. Some sufficient conditions are derived for reaching second-order consensus in multiagent systems with nonlinear dynamics based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples are given to verify the theoretical analysis.

982 citations

Journal ArticleDOI
TL;DR: A phenomenological theory of inhomogeneous ferroelectric magnets is presented, which describes their thermodynamics and magnetic field behavior, and shows that electric polarization can also be induced at domain walls and that magnetic vortices carry electric charge.
Abstract: It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric susceptibility anomalies at magnetic transitions and sudden flops of electric polarization in an applied magnetic field. We show that electric polarization can also be induced at domain walls and that magnetic vortices carry electric charge.

982 citations

Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Matthew W. Jones3, Michael O'Sullivan2, Robbie M. Andrew, Judith Hauck4, Glen P. Peters, Wouter Peters5, Wouter Peters6, Julia Pongratz7, Julia Pongratz8, Stephen Sitch2, Corinne Le Quéré3, Dorothee C. E. Bakker3, Josep G. Canadell9, Philippe Ciais10, Robert B. Jackson11, Peter Anthoni12, Leticia Barbero13, Leticia Barbero14, Ana Bastos8, Vladislav Bastrikov10, Meike Becker15, Meike Becker16, Laurent Bopp1, Erik T. Buitenhuis3, Naveen Chandra17, Frédéric Chevallier10, Louise Chini18, Kim I. Currie19, Richard A. Feely20, Marion Gehlen10, Dennis Gilfillan21, Thanos Gkritzalis22, Daniel S. Goll23, Nicolas Gruber24, Sören B. Gutekunst25, Ian Harris26, Vanessa Haverd9, Richard A. Houghton27, George C. Hurtt18, Tatiana Ilyina7, Atul K. Jain28, Emilie Joetzjer10, Jed O. Kaplan29, Etsushi Kato, Kees Klein Goldewijk30, Kees Klein Goldewijk31, Jan Ivar Korsbakken, Peter Landschützer7, Siv K. Lauvset16, Nathalie Lefèvre32, Andrew Lenton33, Andrew Lenton34, Sebastian Lienert35, Danica Lombardozzi36, Gregg Marland21, Patrick C. McGuire37, Joe R. Melton, Nicolas Metzl32, David R. Munro38, Julia E. M. S. Nabel7, Shin-Ichiro Nakaoka39, Craig Neill33, Abdirahman M Omar16, Abdirahman M Omar33, Tsuneo Ono, Anna Peregon40, Anna Peregon10, Denis Pierrot13, Denis Pierrot14, Benjamin Poulter41, Gregor Rehder42, Laure Resplandy43, Eddy Robertson44, Christian Rödenbeck7, Roland Séférian10, Jörg Schwinger16, Jörg Schwinger31, Naomi E. Smith45, Naomi E. Smith6, Pieter P. Tans20, Hanqin Tian46, Bronte Tilbrook33, Bronte Tilbrook34, Francesco N. Tubiello47, Guido R. van der Werf48, Andy Wiltshire44, Sönke Zaehle7 
École Normale Supérieure1, University of Exeter2, Norwich Research Park3, Alfred Wegener Institute for Polar and Marine Research4, University of Groningen5, Wageningen University and Research Centre6, Max Planck Society7, Ludwig Maximilian University of Munich8, Commonwealth Scientific and Industrial Research Organisation9, Centre national de la recherche scientifique10, Stanford University11, Karlsruhe Institute of Technology12, Atlantic Oceanographic and Meteorological Laboratory13, Cooperative Institute for Marine and Atmospheric Studies14, Geophysical Institute, University of Bergen15, Bjerknes Centre for Climate Research16, Japan Agency for Marine-Earth Science and Technology17, University of Maryland, College Park18, National Institute of Water and Atmospheric Research19, National Oceanic and Atmospheric Administration20, Appalachian State University21, Flanders Marine Institute22, Augsburg College23, ETH Zurich24, Leibniz Institute of Marine Sciences25, University of East Anglia26, Woods Hole Research Center27, University of Illinois at Urbana–Champaign28, University of Hong Kong29, Utrecht University30, Netherlands Environmental Assessment Agency31, University of Paris32, Hobart Corporation33, University of Tasmania34, University of Bern35, National Center for Atmospheric Research36, University of Reading37, Cooperative Institute for Research in Environmental Sciences38, National Institute for Environmental Studies39, Russian Academy of Sciences40, Goddard Space Flight Center41, Leibniz Institute for Baltic Sea Research42, Princeton University43, Met Office44, Lund University45, Auburn University46, Food and Agriculture Organization47, VU University Amsterdam48
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land use change, and show that the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere is a measure of imperfect data and understanding of the contemporary carbon cycle.
Abstract: . Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFF ) are based on energy statistics and cement production data, while emissions from land use change ( ELUC ), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( GATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN ) and terrestrial CO2 sink ( SLAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( BIM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.9±0.02 GtC yr −1 ( 2.3±0.01 ppm yr −1 ), SOCEAN 2.5±0.6 GtC yr −1 , and SLAND 3.2±0.6 GtC yr −1 , with a budget imbalance BIM of 0.4 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr −1 , reaching 10 GtC yr −1 for the first time in history, ELUC was 1.5±0.7 GtC yr −1 , for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr −1 ( 42.5±3.3 GtCO2 ). Also for 2018, GATM was 5.1±0.2 GtC yr −1 ( 2.4±0.1 ppm yr −1 ), SOCEAN was 2.6±0.6 GtC yr −1 , and SLAND was 3.5±0.7 GtC yr −1 , with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).

981 citations

Journal ArticleDOI
TL;DR: Since the total culturable counts were only a fraction of the total microscopic counts, the contribution of bifidobacteria to the total intestinal microflora was overestimated by almost 10-fold when cultural methods were used as the sole method for enumeration.
Abstract: Three 16S rRNA hybridization probes were developed and tested for genus-specific detection of Bifidobacterium species in the human fecal flora. Variable regions V2, V4, and V8 of the 16S rRNA contained sequences unique to this genus and proved applicable as target sites for oligodeoxynucleotide probes. Determination of the genus specificity of the oligonucleotides was performed by whole-cell hybridization with fluorescein isothiocyanate-labelled probes. To this end, cells were fixed on glass slides, hybridized with the probes, and monitored by videomicroscopy. In combination with image analysis, this allowed quantification of the fluorescence per cell and objective evaluation of hybridization experiments. One of the probes developed was used to determine the population of Bifidobacterium spp. in human fecal samples. A comparison was made with results obtained by cultural methods for enumeration. Since both methods gave similar population estimates, it was concluded that all bifidobacteria in feces were culturable. However, since the total culturable counts were only a fraction of the total microscopic counts, the contribution of bifidobacteria to the total intestinal microflora was overestimated by almost 10-fold when cultural methods were used as the sole method for enumeration.

979 citations

Journal ArticleDOI
15 Mar 2001-Nature
TL;DR: Room-temperature electrical injection and detection of spin currents and observe spin accumulation in an all-metal lateral mesoscopic spin valve, where ferromagnetic electrodes are used to drive a spin-polarized current into crossed copper strips is reported.
Abstract: Finding a means to generate, control and use spin-polarized currents represents an important challenge for spin-based electronics1,2,3, or ‘spintronics’. Spin currents and the associated phenomenon of spin accumulation can be realized by driving a current from a ferromagnetic electrode into a non-magnetic metal or semiconductor. This was first demonstrated over 15 years ago in a spin injection experiment4 on a single crystal aluminium bar at temperatures below 77 K. Recent experiments5,6,7,8 have demonstrated successful optical detection of spin injection in semiconductors, using either optical injection by circularly polarized light or electrical injection from a magnetic semiconductor. However, it has not been possible to achieve fully electrical spin injection and detection at room temperature. Here we report room-temperature electrical injection and detection of spin currents and observe spin accumulation in an all-metal lateral mesoscopic spin valve, where ferromagnetic electrodes are used to drive a spin-polarized current into crossed copper strips. We anticipate that larger signals should be obtainable by optimizing the choice of materials and device geometry.

978 citations


Authors

Showing all 36692 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas J. Wareham2121657204896
André G. Uitterlinden1991229156747
Lei Jiang1702244135205
Brenda W.J.H. Penninx1701139119082
Richard H. Friend1691182140032
Panos Deloukas162410154018
Jerome I. Rotter1561071116296
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Scott T. Weiss147102574742
Dieter Lutz13967167414
Wilmar B. Schaufeli13751395718
Cisca Wijmenga13666886572
Arnold B. Bakker135506103778
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

98% related

Utrecht University
139.3K papers, 6.2M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

University College London
210.6K papers, 9.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022543
20214,487
20203,990
20193,283
20182,836