scispace - formally typeset
Search or ask a question
Institution

University of Groningen

EducationGroningen, Groningen, Netherlands
About: University of Groningen is a education organization based out in Groningen, Groningen, Netherlands. It is known for research contribution in the topics: Population & Context (language use). The organization has 36346 authors who have published 69116 publications receiving 2940370 citations. The organization is also known as: Rijksuniversiteit Groningen & RUG.


Papers
More filters
Journal ArticleDOI
TL;DR: To describe the 12‐month and lifetime prevalence rates of mood, anxiety and alcohol disorders in six European countries, a large number of countries with high prevalence of these disorders have been surveyed.
Abstract: Objective: To describe the 12-month and lifetime prevalence rates of mood, anxiety and alcohol disorders in six European countries. Method: A representative random sample of non-institutionalized inhabitants from Belgium, France, Germany, Italy, the Netherlands and Spain aged 18 or older (n = 21425) were interviewed between January 2001 and August 2003. DSM-IV disorders were assessed by lay interviewers using a revised version of the Composite International Diagnostic Interview (WMH-CIDI). Results: Fourteen per cent reported a lifetime history of any mood disorder, 13.6% any anxiety disorder and 5.2% a lifetime history of any alcohol disorder. More than 6% reported any anxiety disorder, 4.2% any mood disorder, and 1.0% any alcohol disorder in the last year. Major depression and specific phobia were the most common single mental disorders. Women were twice as likely to suffer 12-month mood and anxiety disorders as men, while men were more likely to suffer alcohol abuse disorders. Conclusion: ESEMeD is the first study to highlight the magnitude of mental disorders in the six European countries studied. Mental disorders were frequent, more common in female, unemployed, disabled persons, or persons who were never married or previously married. Younger persons were also more likely to have mental disorders, indicating an early age of onset for mood, anxiety and alcohol disorders.

1,780 citations

Journal ArticleDOI
Hana Lango Allen1, Karol Estrada2, Guillaume Lettre3, Sonja I. Berndt4  +341 moreInstitutions (90)
14 Oct 2010-Nature
TL;DR: It is shown that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, and indicates that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,768 citations

Journal ArticleDOI
Pierre Friedlingstein1, Pierre Friedlingstein2, Michael O'Sullivan1, Matthew W. Jones3, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters4, Wouter Peters5, Julia Pongratz6, Julia Pongratz7, Stephen Sitch2, Corinne Le Quéré3, Josep G. Canadell8, Philippe Ciais9, Robert B. Jackson10, Simone R. Alin11, Luiz E. O. C. Aragão2, Luiz E. O. C. Aragão12, Almut Arneth, Vivek K. Arora, Nicholas R. Bates13, Nicholas R. Bates14, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp15, Selma Bultan7, Naveen Chandra16, Naveen Chandra17, Frédéric Chevallier9, Louise Chini18, Wiley Evans, Liesbeth Florentie5, Piers M. Forster19, Thomas Gasser20, Marion Gehlen9, Dennis Gilfillan, Thanos Gkritzalis21, Luke Gregor22, Nicolas Gruber22, Ian Harris23, Kerstin Hartung24, Kerstin Hartung7, Vanessa Haverd8, Richard A. Houghton25, Tatiana Ilyina6, Atul K. Jain26, Emilie Joetzjer27, Koji Kadono28, Etsushi Kato, Vassilis Kitidis29, Jan Ivar Korsbakken, Peter Landschützer6, Nathalie Lefèvre30, Andrew Lenton31, Sebastian Lienert32, Zhu Liu33, Danica Lombardozzi34, Gregg Marland35, Nicolas Metzl30, David R. Munro11, David R. Munro36, Julia E. M. S. Nabel6, S. Nakaoka16, Yosuke Niwa16, Kevin D. O'Brien11, Kevin D. O'Brien37, Tsuneo Ono, Paul I. Palmer, Denis Pierrot38, Benjamin Poulter, Laure Resplandy39, Eddy Robertson40, Christian Rödenbeck6, Jörg Schwinger, Roland Séférian27, Ingunn Skjelvan, Adam J. P. Smith3, Adrienne J. Sutton11, Toste Tanhua41, Pieter P. Tans11, Hanqin Tian42, Bronte Tilbrook43, Bronte Tilbrook31, Guido R. van der Werf44, N. Vuichard9, Anthony P. Walker45, Rik Wanninkhof38, Andrew J. Watson2, David R. Willis23, Andy Wiltshire40, Wenping Yuan46, Xu Yue47, Sönke Zaehle6 
École Normale Supérieure1, University of Exeter2, Norwich Research Park3, University of Groningen4, Wageningen University and Research Centre5, Max Planck Society6, Ludwig Maximilian University of Munich7, Commonwealth Scientific and Industrial Research Organisation8, Université Paris-Saclay9, Stanford University10, National Oceanic and Atmospheric Administration11, National Institute for Space Research12, Bermuda Institute of Ocean Sciences13, University of Southampton14, PSL Research University15, National Institute for Environmental Studies16, Japan Agency for Marine-Earth Science and Technology17, University of Maryland, College Park18, University of Leeds19, International Institute of Minnesota20, Flanders Marine Institute21, ETH Zurich22, University of East Anglia23, German Aerospace Center24, Woods Hole Research Center25, University of Illinois at Urbana–Champaign26, University of Toulouse27, Japan Meteorological Agency28, Plymouth Marine Laboratory29, University of Paris30, Hobart Corporation31, Oeschger Centre for Climate Change Research32, Tsinghua University33, National Center for Atmospheric Research34, Appalachian State University35, University of Colorado Boulder36, University of Washington37, Atlantic Oceanographic and Meteorological Laboratory38, Princeton University39, Met Office40, Leibniz Institute of Marine Sciences41, Auburn University42, University of Tasmania43, VU University Amsterdam44, Oak Ridge National Laboratory45, Sun Yat-sen University46, Nanjing University47
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

1,764 citations

Journal ArticleDOI
TL;DR: Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s as mentioned in this paper, and it has been widely used in biomedical applications, as well as the biodegradable resin materials developed for use with stereolithography.

1,760 citations

Journal ArticleDOI
TL;DR: The use of darbepoetin alfa in patients with diabetes, chronic kidney disease, and moderate anemia who were not undergoing dialysis did not reduce the risk of either of the two primary composite outcomes (either death or a cardiovascular event ordeath or a renal event) and was associated with an increased risk of stroke.
Abstract: Background Anemia is associated with an increased risk of cardiovascular and renal events among patients with type 2 diabetes and chronic kidney disease. Although darbepoetin alfa can effectively increase hemoglobin levels, its effect on clinical outcomes in these patients has not been adequately tested. Methods In this study involving 4038 patients with diabetes, chronic kidney disease, and anemia, we randomly assigned 2012 patients to darbepoetin alfa to achieve a hemoglobin level of approximately 13 g per deciliter and 2026 patients to placebo, with rescue darbepoetin alfa when the hemoglobin level was less than 9.0 g per deciliter. The primary end points were the composite outcomes of death or a cardiovascular event (nonfatal myocardial infarction, congestive heart failure, stroke, or hospitalization for myocardial ischemia) and of death or end-stage renal disease. Results Death or a cardiovascular event occurred in 632 patients assigned to darbepoetin alfa and 602 patients assigned to placebo (hazard...

1,750 citations


Authors

Showing all 36692 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Nicholas J. Wareham2121657204896
André G. Uitterlinden1991229156747
Lei Jiang1702244135205
Brenda W.J.H. Penninx1701139119082
Richard H. Friend1691182140032
Panos Deloukas162410154018
Jerome I. Rotter1561071116296
Christopher M. Dobson1501008105475
Dirk Inzé14964774468
Scott T. Weiss147102574742
Dieter Lutz13967167414
Wilmar B. Schaufeli13751395718
Cisca Wijmenga13666886572
Arnold B. Bakker135506103778
Network Information
Related Institutions (5)
University of Amsterdam
140.8K papers, 5.9M citations

98% related

Utrecht University
139.3K papers, 6.2M citations

97% related

University of Manchester
168K papers, 6.4M citations

94% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

94% related

University College London
210.6K papers, 9.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022543
20214,487
20203,990
20193,283
20182,836