scispace - formally typeset
Search or ask a question
Institution

University of Texas Medical Branch

EducationGalveston, Texas, United States
About: University of Texas Medical Branch is a education organization based out in Galveston, Texas, United States. It is known for research contribution in the topics: Population & Virus. The organization has 22033 authors who have published 38268 publications receiving 1517502 citations. The organization is also known as: The University of Texas Medical Branch at Galveston & UTMB.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of 27 studies including more than 4,000 subjects indicates that attributional style is clearly cross-sectionally associated with self-reported depression and with clinical depression, and that this appears to hold across age, gender, and sample type as discussed by the authors.

242 citations

Journal ArticleDOI
TL;DR: A new in vitro priming procedure is reported that generates a nearly pure population of neurons from fetal human neural stem cells (hNSCs) transplanted into adult rat CNS and the grafted cells differentiated by acquiring a cholinergic phenotype in a region-specific manner.
Abstract: Pluripotent or multipotent stem cells isolated from human embryos or adult central nervous system (CNS) may provide new neurons to ameliorate neural disorders. A major obstacle, however, is that the majority of such cells do not differentiate into neurons when grafted into non-neurogenic areas of the adult CNS. Here we report a new in vitro priming procedure that generates a nearly pure population of neurons from fetal human neural stem cells (hNSCs) transplanted into adult rat CNS. Furthermore, the grafted cells differentiated by acquiring a cholinergic phenotype in a region-specific manner. This technology may advance stem cell-based therapy to replace lost neurons in neural injury or neurodegenerative disorders.

242 citations

Journal ArticleDOI
TL;DR: Results strongly indicate haptoglobin to be a homolog of the chymotrypsinogen family of serine proteases, a striking example of homologous proteins with different biological functions.
Abstract: The complete amino acid sequences and the disulfide arrangements of the two chains of human haptoglobin 1-1 were established. The alpha 1 and beta chains of haptoglobin contain 83 and 245 residues, respectively. Comparison of the primary structure of haptoglobin with that of the chymotrypsinogen family of serine proteases revealed a significant degree of chemical similarity. The probability was less than 10(-5) that the chemical similarity of the beta chain of haptoglobin to the proteases was due to chance. The amino acid sequence of the beta chain of haptoglobin is 29--33% identical to bovine trypsin, bovine chymotrypsin, porcine elastase, human thrombin, or human plasmin. Comparison of haptoglobin alpha 1 chain to activation peptide regions of the zymogens revealed an identity of 25% to the fifth "kringle" region of the activation peptide of plasminogen. The probability was less than 0.014 that this similarity was due to chance. These results strongly indicate haptoglobin to be a homolog of the chymotrypsinogen family of serine proteases. Alignment of the beta-chain sequence of haptoglobin to the serine proteases is remarkably consistent except for an insertion of 16 residues in the region corresponding to the methionyl loop of the serine proteases. The active-site residues typical of the serine proteases, histidine-57 and serine-195, are replaced in haptoglobin by lysine and alanine, respectively; however, aspartic acid-102 and the trypsin specificity, residue, aspartic acid-189, do occur in haptoglobin. Haptoglobin and the serine proteases represent a striking example of homologous proteins with different biological functions.

242 citations

Journal ArticleDOI
TL;DR: It is concluded that ingestion of carbohydrates improved net leg protein balance after resistance exercise, however, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.
Abstract: The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of 2H5- or 13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO (P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 +/- 3 nmol.ml(-1).100 ml leg(-1) before drink to an average of -4 +/- 4 and 0 +/- 3 nmol.ml(-1).100 ml leg(-1) during the second and third hour after the drink, respectively (P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.

242 citations

Journal ArticleDOI
TL;DR: In this era of public–private partnerships, can breastfeeding's role as an irreplaceable immunological resource help keep it at the top of global agendas?
Abstract: Breastfeeding — the main source of active and passive immunity in the vulnerable early months and years of life — is considered to be the most effective preventive means of reducing the death rate of children under five. Given this, one must wonder why it has slipped quietly down the priorities of the global health and development agendas. In this era of public–private partnerships, can its role as an irreplaceable immunological resource help keep it at the top of global agendas?

242 citations


Authors

Showing all 22143 results

NameH-indexPapersCitations
Stuart H. Orkin186715112182
Eric R. Kandel184603113560
John C. Morris1831441168413
Joseph Biederman1791012117440
Richard A. Gibbs172889249708
Timothy A. Springer167669122421
Gabriel N. Hortobagyi1661374104845
Roberto Romero1511516108321
Charles B. Nemeroff14997990426
Peter J. Schwartz147647107695
Clifford J. Woolf14150986164
Thomas J. Smith1401775113919
Edward C. Holmes13882485748
Jun Lu135152699767
Henry T. Lynch13392586270
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

97% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

97% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

National Institutes of Health
297.8K papers, 21.3M citations

97% related

University of California, San Francisco
186.2K papers, 12M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022196
20211,617
20201,487
20191,298
20181,152