scispace - formally typeset
Search or ask a question
Institution

University of Texas Medical Branch

EducationGalveston, Texas, United States
About: University of Texas Medical Branch is a education organization based out in Galveston, Texas, United States. It is known for research contribution in the topics: Population & Virus. The organization has 22033 authors who have published 38268 publications receiving 1517502 citations. The organization is also known as: The University of Texas Medical Branch at Galveston & UTMB.


Papers
More filters
Journal ArticleDOI
TL;DR: The challenges to the development of a safe, effective and affordable chikungunya vaccine are discussed and recent progress toward this goal is discussed.
Abstract: In 2004, chikungunya virus (CHIKV) re-emerged from East Africa to cause devastating epidemics of debilitating and often chronic arthralgia that have affected millions of people in the Indian Ocean Basin and Asia. More limited epidemics initiated by travelers subsequently occurred in Italy and France, as well as human cases exported to most regions of the world, including the Americas where CHIKV could become endemic. Because CHIKV circulates during epidemics in an urban mosquito–human cycle, control of transmission relies on mosquito abatement, which is rarely effective. Furthermore, there is no antiviral treatment for CHIKV infection and no licensed vaccine to prevent disease. Here, we discuss the challenges to the development of a safe, effective and affordable chikungunya vaccine and recent progress toward this goal.

229 citations

Journal ArticleDOI
TL;DR: Results demonstrate successful tumor accumulation of functionalized gold nanorods within HER2/neu overexpressing breast tumors in tumor-bearing nude mice and support the notions that GNRs can be used for molecular imaging of tumor.
Abstract: A novel technique is described to functionalize gold nanorods (GNRs) allowing for in vivo targeting of breast cancer tumors grown in athymic nude mice. GNRs were functionalized by covalent attachment of Herceptin (HER), a monoclonal antibody that enables molecular recognition of breast cancer cells expressing highly specific tumor associated antigens, and poly(ethylene glycol) (PEG) which obscures particles against the reticuloendothelial system in the body. The stability and functionality of fabricated particles (Her-PEG GNRs) were demonstrated in vitro in the presence of blood and then in vivo in nude mice model for breast cancer. The results demonstrate successful tumor accumulation of functionalized gold nanorods within HER2/neu overexpressing breast tumors in tumor-bearing nude mice and support the notions that GNRs can be used for molecular imaging of tumor.

229 citations

Book
01 Jan 2011
TL;DR: A class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus–cell fusion are revealed.
Abstract: We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus–cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure–activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus–cell but not cell–cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus–cell fusion.

229 citations

Journal ArticleDOI
TL;DR: Using sensitive immunohistochemical and in situ hybridization methods in 50 glioma samples, Wang et al. as discussed by the authors detected HCMV antigen and DNA in 21/21 cases of glioblastoma, 9/12 cases of anaplastic gliomas and 14/17 cases of low-grade Gliomas.
Abstract: The association between human cytomegalovirus (HCMV) infection and glioblastoma has been a source of debate in recent years because of conflicting laboratory reports concerning the presence of the virus in glioma tissue. HCMV is a ubiquitous herpesvirus that exhibits tropism for glial cells and has been shown to transform cells in vitro. Using sensitive immunohistochemical and in situ hybridization methods in 50 glioma samples, we detected HCMV antigen and DNA in 21/21 cases of glioblastoma, 9/12 cases of anaplastic gliomas and 14/17 cases of low-grade gliomas. Reactivity against the HCMV IE1 antigen (72 kDa) exhibited histology-specific patterns with more nuclear staining for anaplastic and low-grade gliomas, while GBMs showed nuclear and cytoplasmic staining that likely occurs with latent infection. Using IHC, the number of HCMV-positive cells in GBMs was 79% compared to 48% in lower grade tumors. Non-tumor areas of the tissue contained only four and 1% of HCMV-positive cells for GBMs and lower grade tumors, respectively. Hybridization to HCMV DNA in infected cells corresponded to patterns of immunoreactivity. Our findings support previous reports of the presence of HCMV infection in glioma tissues and advocate optimization of laboratory methods for the detection of active HCMV infections. This will allow for detection of low-level latent infections that may play an important role in the initiation and/or promotion of malignant gliomas.

229 citations

Journal Article
TL;DR: The authors' findings provide evidence for the interaction of lymphocytes and basophils via a soluble mediator in human mononuclear cells through the use of HRA, a histamine-releasing activity that probably requires active protein synthesis.
Abstract: Supernatants from 1- to 2-day cultures of human mononuclear cells induced the release of histamine from basophils Generation of this histamine-releasing activity (HRA) was stimulated by addition of concanavalin A to the cell cultures Mononuclear cells were also cultured with SKSD and Candida albicans antigens Stimulation of HRA production by these antigens was correlated with positive delayed skin reactions Serial dilutions of supernatants assayed for HRA provided a semiquantitative determination of the level of HRA in mitogen- or antigen-stimulated samples Antigen increased HRA production when added during the first or second day of culture Generation of HRA probably requires active protein synthesis, since puromycin was inhibitory, and since preformed HRA could not be recovered from lysed cells HRA was detected in supernatants after 4 hr, and the effects of antigen stimulation were apparent after 8 hr of culture Replacement of supernatants with fresh culture medium allowed continued synthesis of substantial quantities of HRA during the second day of culture A linear correlation was observed between the amount of HRA produced and the mononuclear cell concentration Our findings provide evidence for the interaction of lymphocytes and basophils via a soluble mediator

229 citations


Authors

Showing all 22143 results

NameH-indexPapersCitations
Stuart H. Orkin186715112182
Eric R. Kandel184603113560
John C. Morris1831441168413
Joseph Biederman1791012117440
Richard A. Gibbs172889249708
Timothy A. Springer167669122421
Gabriel N. Hortobagyi1661374104845
Roberto Romero1511516108321
Charles B. Nemeroff14997990426
Peter J. Schwartz147647107695
Clifford J. Woolf14150986164
Thomas J. Smith1401775113919
Edward C. Holmes13882485748
Jun Lu135152699767
Henry T. Lynch13392586270
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

97% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

97% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

National Institutes of Health
297.8K papers, 21.3M citations

97% related

University of California, San Francisco
186.2K papers, 12M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022196
20211,617
20201,487
20191,298
20181,152