scispace - formally typeset
Search or ask a question
Institution

University of Turin

EducationTurin, Piemonte, Italy
About: University of Turin is a education organization based out in Turin, Piemonte, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 29607 authors who have published 77952 publications receiving 2480900 citations. The organization is also known as: Universita degli Studi di Torino & Università degli Studi di Torino.


Papers
More filters
Journal ArticleDOI
TL;DR: A unique approach for the pathological classification of a glomerular disease, IgA nephropathy, is developed, in which renal pathologists first undertook extensive iterative work to define pathologic variables with acceptable inter-observer reproducibility.

779 citations

Journal ArticleDOI
TL;DR: In this article, the stellar (n,gamma) cross sections of neutron-magic nuclei at N = 82, and in particular of 142Nd, turned out to represent a sensitive test for models of s-process nucleosynthesis and provided significantly better agreement between the solar abundance distribution of s nuclei and the predictions of models for low mass AGB stars.
Abstract: The recently improved information on the stellar (n,gamma) cross sections of neutron-magic nuclei at N = 82, and in particular of 142Nd, turned out to represent a sensitive test for models of s-process nucleosynthesis. While these data were found to be incompatible with the classical approach based on an exponential distribution of neutron exposures, they provide significantly better agreement between the solar abundance distribution of s nuclei and the predictions of models for low mass AGB stars. Particular attention is paid to a consistent description of s-process branchings in the region of the rare earth elements. It is shown that - in certain cases - the nuclear data are sufficiently accurate that the resulting abundance uncertainties can be completely attributed to stellar modelling. Thus, the s process becomes important for testing the role of different stellar masses and metallicities as well as for constraining the assumptions for describing the low neutron density provided by the 13C source.

778 citations

Journal ArticleDOI
TL;DR: The problem of numerical accuracy in the calculation of vibrational frequencies of crystalline compounds from the hessian matrix is discussed with reference to α‐quartz (SiO2) as a case study and to the specific implementation in the CRYSTAL code.
Abstract: The problem of numerical accuracy in the calculation of vibrational frequencies of crystalline compounds from the hessian matrix is discussed with reference to alpha-quartz (SiO(2)) as a case study and to the specific implementation in the CRYSTAL code. The Hessian matrix is obtained by numerical differentiation of the analytical gradient of the energy with respect to the atomic positions. The process of calculating vibrational frequencies involves two steps: the determination of the equilibrium geometry, and the calculation of the frequencies themselves. The parameters controlling the truncation of the Coulomb and exchange series in Hartree-Fock, the quality of the grid used for the numerical integration of the Exchange-correlation potential in Density Functional Theory, the SCF convergence criteria, the parameters controlling the convergence of the optimization process as well as those controlling the accuracy of the numerical calculation of the Hessian matrix can influence the obtained vibrational frequencies to some extent. The effect of all these parameters is discussed and documented. It is concluded that with relatively economical computational conditions the uncertainty related to these parameters is smaller than 2-4 cm(-1). In the case of the Local Density Approximation scheme, comparison is possible with recent calculations performed with a Density Functional Perturbation Theory method and a plane-wave basis set.

777 citations

Journal ArticleDOI
TL;DR: The canonical ligand‐induced EGFR signaling pathway is reviewed, with particular emphasis to its regulation by endocytosis and subversion in human tumors, and the most recent advances in uncovering noncanonical EGFR functions in stress‐induced trafficking, autophagy, and energy metabolism are focused on.

775 citations

Journal ArticleDOI
TL;DR: In this article, a new analysis of neutron capture occurring in low-mass asymptotic giant branch (AGB) stars suffering recurrent thermal pulses is presented, where the authors use dedicated evolutionary models for stars of initial mass in the range 1 to 3 M? and metallicity from solar to half solar.
Abstract: We present a new analysis of neutron capture occurring in low-mass asymptotic giant branch (AGB) stars suffering recurrent thermal pulses. We use dedicated evolutionary models for stars of initial mass in the range 1 to 3 M? and metallicity from solar to half solar. Mass loss is taken into account with the Reimers parameterization. The third dredge-up mechanism is self-consistently found to occur after a limited number of pulses, mixing with the envelope freshly synthesized 12C and s-processed material from the He intershell. During thermal pulses, the temperature at the base of the convective region barely reaches T8 ~ 3 (T8 being the temperature in units of 108 K), leading to a marginal activation of the 22Ne(?, n)25Mg neutron source. The alternative and much faster reaction 13C(?, n)16O must then play the major role. However, the 13C abundance left behind by the H shell is far too low to drive the synthesis of the s-elements. We assume instead that at any third dredge-up episode, hydrogen downflows from the envelope penetrate into a tiny region placed at the top of the 12C-rich intershell, of the order of a few 10-4 M?. At H reignition, a13C-rich (and 14N-rich) zone is formed. Neutrons by the major 13C source are then released in radiative conditions at T8 ~ 0.9 during the interpulse period, giving rise to an efficient s-processing that depends on the 13C profile in the pocket. A second small neutron burst from the 22Ne source operates during convective pulses over previously s-processed material diluted with fresh Fe seeds and H-burning ashes. The main features of the final s-process abundance distribution in the material cumulatively mixed with the envelope through the various third dredge-up episodes are discussed. Contrary to current expectations, the distribution cannot be approximated by a simple exponential law of neutron irradiations. The s-process nucleosynthesis mostly occurs inside the 13C pocket; the form of the distribution is built through the interplay of the s-processing occurring in the intershell zones and the geometrical overlap of different pulses. The 13C pocket is of primary origin, resulting from proton captures on newly synthesized 12C. Consequently, the s-process nucleosynthesis also depends on Fe seeds, a lower metallicity favoring the production of the heaviest elements. This allows a wide range of s-element abundance distributions to be produced in AGB stars of different metallicities, in agreement with spectroscopic evidence and with the Galactic enrichment of the heavy s-elements at the time of formation of the solar system. AGB stars of metallicity Z $f {1}{2} $ --> Z? are the best candidates for the buildup of the main component, i.e., for the s-distribution of the heavy elements from the Sr-Y-Zr peak up to the Pb peak, as deduced by meteoritic and solar spectroscopic analyses. A number of AGB stars may actually show in their envelopes an s-process abundance distribution almost identical to that of the main component. Eventually, the astrophysical origin of mainstream circumstellar SiC grains recovered from pristine meteorites, showing a nonsolar s-signatures in a number of trace heavy elements, is likely identified in the circumstellar envelopes of AGB stars of about solar metallicity, locally polluting the interstellar medium from which the solar system condensed.

773 citations


Authors

Showing all 30045 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Lewis C. Cantley196748169037
Kenneth C. Anderson1781138126072
Elio Riboli1581136110499
Giacomo Bruno1581687124368
Silvia Franceschi1551340112504
Thomas E. Starzl150162591704
Paolo Boffetta148145593876
Marco Costa1461458105096
Pier Paolo Pandolfi14652988334
Andrew Ivanov142181297390
Chiara Mariotti141142698157
Tomas Ganz14148073316
Jean-Pierre Changeux13867276462
Dong-Chul Son138137098686
Network Information
Related Institutions (5)
University of Milan
139.7K papers, 4.6M citations

98% related

Sapienza University of Rome
155.4K papers, 4.3M citations

97% related

University of Padua
114.8K papers, 3.6M citations

97% related

University of Bologna
115.1K papers, 3.4M citations

96% related

Utrecht University
139.3K papers, 6.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023202
2022623
20215,734
20205,428
20194,544
20184,233