scispace - formally typeset
Search or ask a question
Institution

University of Windsor

EducationWindsor, Ontario, Canada
About: University of Windsor is a education organization based out in Windsor, Ontario, Canada. It is known for research contribution in the topics: Population & Argumentation theory. The organization has 10654 authors who have published 22307 publications receiving 435906 citations. The organization is also known as: UWindsor & Assumption University of Windsor.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel fusion framework is proposed for multimodal medical images based on non-subsampled contourlet transform (NSCT) to enable more accurate analysis of multimodality images.
Abstract: Multimodal medical image fusion, as a powerful tool for the clinical applications, has developed with the advent of various imaging modalities in medical imaging. The main motivation is to capture most relevant information from sources into a single output, which plays an important role in medical diagnosis. In this paper, a novel fusion framework is proposed for multimodal medical images based on non-subsampled contourlet transform (NSCT). The source medical images are first transformed by NSCT followed by combining low- and high-frequency components. Two different fusion rules based on phase congruency and directive contrast are proposed and used to fuse low- and high-frequency coefficients. Finally, the fused image is constructed by the inverse NSCT with all composite coefficients. Experimental results and comparative study show that the proposed fusion framework provides an effective way to enable more accurate analysis of multimodality images. Further, the applicability of the proposed framework is carried out by the three clinical examples of persons affected with Alzheimer, subacute stroke and recurrent tumor.

381 citations

Journal ArticleDOI
TL;DR: The Lewis acid B(C(6)F(5))(3) has been found to be an efficient catalyst for the direct hydrogenation of imines and the reductive ring-opening of aziridines with H(2) under mild conditions.

374 citations

Journal ArticleDOI
TL;DR: The shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhancing surface analysis, is included, based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity.
Abstract: Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.

371 citations

Journal ArticleDOI
TL;DR: It is the degree of demographic connectivity that characterizes metapopulations, with the dynamics of local populations strongly dependent upon local demographic processes, but also influenced by a nontrivial element of external replenishment, which means estimating rates of interpopulation exchange must be a research priority.
Abstract: Marine and fisheries scientists are increasingly using metapopulation concepts to better understand and model their focal systems. Consequently, they are considering what defines a metapopulation. One perspective on this question emphasizes the importance of extinction probability in local populations. This view probably stems from the focus on extinction in Levins' original metapopulation model, but places unnecessary emphasis on extinction–recolonization dynamics. Metapopulation models with more complex structure than Levins' patch-occupancy model and its variants allow a broader range of population phenomena to be examined, such as changes in population size, age structure and genetic structure. Analyses along these lines are critical in fisheries science, where presence–absence resolution is far too coarse to understand stock dynamics in a meaningful way. These more detailed investigations can, but need not, aim to assess extinction risk or deal with extinction-prone local populations. Therefore, we emphasize the coupling of spatial scales as the defining feature of metapopulations. It is the degree of demographic connectivity that characterizes metapopulations, with the dynamics of local populations strongly dependent upon local demographic processes, but also influenced by a nontrivial element of external replenishment. Therefore, estimating rates of interpopulation exchange must be a research priority. We contrast metapopulations with other spatially structured populations that differ in the degree of local closure of their component populations. We conclude with consideration of the implications of metapopulation structure for spatially explicit management, particularly the design of marine protected area networks.

371 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the tradeoff between connectivity and representation of coral reef biodiversity and provide general recommendations for the location, size and spacing of no-take reserves based on emerging data on larval dispersal in corals and reef fishes, and on considerations for maintaining genetic diversity.
Abstract: Networks of no-take reserves are important for protecting coral reef biodiversity from climate change and other human impacts. Ensuring that reserve populations are connected to each other and non-reserve populations by larval dispersal allows for recovery from disturbance and is a key aspect of resilience. In general, connectivity between reserves should increase as the distance between them decreases. However, enhancing connectivity may often tradeoff against a network’s ability to representatively sample the system’s natural variability. This “representation” objective is typically measured in terms of species richness or diversity of habitats, but has other important elements (e.g., minimizing the risk that multiple reserves will be impacted by catastrophic events). Such representation objectives tend to be better achieved as reserves become more widely spaced. Thus, optimizing the location, size and spacing of reserves requires both an understanding of larval dispersal and explicit consideration of how well the network represents the broader system; indeed the lack of an integrated theory for optimizing tradeoffs between connectivity and representation objectives has inhibited the incorporation of connectivity into reserve selection algorithms. This article addresses these issues by (1) updating general recommendations for the location, size and spacing of reserves based on emerging data on larval dispersal in corals and reef fishes, and on considerations for maintaining genetic diversity; (2) using a spatial analysis of the Great Barrier Reef Marine Park to examine potential tradeoffs between connectivity and representation of biodiversity and (3) describing a framework for incorporating environmental fluctuations into the conceptualization of the tradeoff between connectivity and representation, and that expresses both in a common, demographically meaningful currency, thus making optimization possible.

368 citations


Authors

Showing all 10751 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Robert E. W. Hancock15277588481
Michael Lynch11242263461
David Zhang111102755118
Paul D. N. Hebert11153766288
Eleftherios P. Diamandis110106452654
Qian Wang108214865557
John W. Berry9735152470
Douglas W. Stephan8966334060
Rebecca Fisher8625550260
Mehdi Dehghan8387529225
Zhong-Qun Tian8164633168
Robert J. Letcher8041122778
Daniel J. Sexton7636925172
Bin Ren7347023452
Network Information
Related Institutions (5)
University of Waterloo
93.9K papers, 2.9M citations

94% related

Queen's University
78.8K papers, 2.8M citations

92% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of Western Ontario
99.8K papers, 3.7M citations

91% related

McMaster University
101.2K papers, 4.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022178
20211,147
20201,005
20191,001
2018882