scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
Boqiang Lin1, Wei Wu1
TL;DR: Zhang et al. as mentioned in this paper examined the factors that may affect the public's purchasing intention of electric vehicles via a survey and proposed an electric vehicle purchasing intention model based on the literature review and the reality in China.

210 citations

Journal ArticleDOI
Jingping Wei1, Jingchao Li1, Duo Sun1, Qi Li1, Jinyuan Ma1, Xiaolan Chen1, Xuan Zhu1, Nanfeng Zheng1 
TL;DR: By integrating the merits of high tumor‐specific accumulation, hypoxia modulation function, and mild photothermal effect into a single nanoagent, Pd@Pt‐PEG‐Ce6 readily acts as an ideal nanotherapeutic platform for enhanced cancer PDT.
Abstract: Photodynamic therapy (PDT), which utilizes reactive oxygen species to kill cancer cells, has found wide applications in cancer treatment. However, the hypoxic nature of most solid tumors can severely restrict the efficiency of PDT. Meanwhile, the hydrophobicity and limited tumor selectivity of some photosensitizers also reduce their PDT efficacy. Herein, a photosensitizer-Pd@Pt nanosystem (Pd@Pt-PEG-Ce6) is designed for highly efficient PDT by overcoming these limitations. In the nanofabrication, Pd@Pt nanoplates, exhibiting catalase-like activity to decompose H2O2 to generate oxygen, are first modified with bifunctional PEG (SH-PEG-NH2). Then the Pd@Pt-PEG is further covalently conjugated with the photosensitizer chlorin e6 (Ce6) to get Pd@Pt-PEG-Ce6 nanocomposite. The Pd@Pt-PEG-Ce6 exhibits good biocompatibility, long blood circulation half-life, efficient tumor accumulation, and outstanding imaging properties. Both in vitro and in vivo experimental results clearly indicate that Pd@Pt-PEG-Ce6 effectively delivers photosensitizers to cancer cells/tumor sites and triggers the decomposition of endogenous H2O2 to produce oxygen, resulting in a remarkably enhanced PDT efficacy. Moreover, the moderate photothermal effect of Pd@Pt nanoplates also strengthen the PDT of Pd@Pt-PEG-Ce6. Therefore, by integrating the merits of high tumor-specific accumulation, hypoxia modulation function, and mild photothermal effect into a single nanoagent, Pd@Pt-PEG-Ce6 readily acts as an ideal nanotherapeutic platform for enhanced cancer PDT.

209 citations

Journal ArticleDOI
TL;DR: Recent advancements in the methodology development of Au-Pd bimetallic NCs offer numerous insights for generating Au- Pd NCs with a number of unique geometries in the future.
Abstract: Au-Pd nanostructured materials have been recognized as important heterogeneous catalysts in various reactions, due to their superior activities caused by the ensemble and ligand effects. In recent years, shape-controlled synthesis of noble metal nanocrystals (NCs) provided a brand-new insight for improving the performance of catalysts. The electronic properties and catalytic activities of Au-Pd NCs could be optimized by tuning their shape and composition engineering. This review describes recent progress in the design and synthesis of shape-controlled Au-Pd bimetallic NCs and their emerging catalytic applications. The review starts with a general discussion of various applications of Au-Pd catalysts and the significance of preparing shape-controlled Au-Pd NCs, followed by an overview of synthetic strategies for two different structures of Au-Pd bimetallic catalysts: a core-shell structure and an alloy structure. We also put forward the key factors for the preparation of Au-Pd core-shell and alloy structures. Additionally, we discussed the unique optical properties and structural effects of shape-controlled Au-Pd NCs. These recent advancements in the methodology development of Au-Pd bimetallic NCs offer numerous insights for generating Au-Pd NCs with a number of unique geometries in the future. Furthermore, the systematic synthesis of core-shell or alloy structures would provide insights for the preparation of other bimetallic NCs.

209 citations

Journal ArticleDOI
TL;DR: An electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets has been shown to directly couple N2 and CO2 in H2O to produce urea under ambient conditions.
Abstract: The use of nitrogen fertilizers has been estimated to have supported 27% of the world’s population over the past century. Urea (CO(NH2)2) is conventionally synthesized through two consecutive industrial processes, N2 + H2 → NH3 followed by NH3 + CO2 → urea. Both reactions operate under harsh conditions and consume more than 2% of the world’s energy. Urea synthesis consumes approximately 80% of the NH3 produced globally. Here we directly coupled N2 and CO2 in H2O to produce urea under ambient conditions. The process was carried out using an electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets. This coupling reaction occurs through the formation of C–N bonds via the thermodynamically spontaneous reaction between *N=N* and CO. Products were identified and quantified using isotope labelling and the mechanism investigated using isotope-labelled operando synchrotron-radiation Fourier transform infrared spectroscopy. A high rate of urea formation of 3.36 mmol g–1 h–1 and corresponding Faradic efficiency of 8.92% were measured at –0.4 V versus reversible hydrogen electrode. Conventionally, urea is synthesized via two consecutive processes, N2 + H2 → NH3 followed by NH3 + CO2. Now, an electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets has been shown to directly couple N2 and CO2 in H2O to produce urea under ambient conditions.

209 citations

Journal ArticleDOI
TL;DR: The number of CRE strains harboring carbapenemase is increasing and K. pneumoniae, the predominant strain, shows a reduced susceptibility to most available antibiotics.
Abstract: Background Carbapenem-resistant Enterobacteriaceae (CRE) strains are a major threat to global health. The development of effective control measures requires more detailed phenotypic and genotypic characterization of CRE. Methods CRE isolates were collected from 65 hospitals in 25 provinces across China between January 1, 2012, and December 31, 2016. The isolates were characterized by antimicrobial susceptibility testing and multilocus sequence typing. Genes encoding carbapenemases, mobilized colistin resistance (mcr-1), and β-lactamases were detected by polymerase chain reaction and DNA sequencing. Results A total of 1801 independent CRE isolates (1201 Klebsiella pneumoniae, 282 Escherichia coli, and 179 Enterobacter cloacae) were collected during the study period. Overall, 96.9%, 89.7%, 54.5%, 49.9%, and 40% of CRE strains were susceptible to colistin, tigecycline, amikacin, minocycline, and fosfomycin, respectively. Notably, 1091/1201 (91%) K. pneumoniae, 225/282 (80%) E. coli, and 129/179 (72%) E. cloacae harbored carbapenemase gene. K. pneumoniae carbapenemase (KPC) was predominant in K. pneumoniae (77%), whereas New Delhi metallo-β-lactamase (NDM) was predominant in E. coli (75%) and E. cloacae (53%). The mcr-1 gene was detected in 13 NDM-carrying E. coli isolates (4.6%). Sequence type (ST)11 and ST167 were predominant among the 100 K. pneumoniae and 47 E. coli STs, respectively. KPC-ST11, which accounted for 64% of K. pneumoniae isolates, had higher levels of resistance than non-ST11 strains to aztreonam, fosfomycin, and amikacin (P < .001). The proportions of KPC and NDM enzymes in CRE increased from 2012 to 2016 (54%-59% and 12%-28%, respectively). Conclusions The number of CRE strains harboring carbapenemase is increasing. KPC-ST11 K. pneumoniae, the predominant strain, shows a reduced susceptibility to most available antibiotics.

209 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022943
20216,784
20205,710
20194,982
20184,057