scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: A reinforcement learning (RL) based offloading scheme for an IoT device with EH to select the edge device and the offloading rate according to the current battery level, the previous radio transmission rate to each edge device, and the predicted amount of the harvested energy.
Abstract: Internet of Things (IoT) devices can apply mobile edge computing (MEC) and energy harvesting (EH) to provide high-level experiences for computational intensive applications and concurrently to prolong the lifetime of the battery. In this paper, we propose a reinforcement learning (RL) based offloading scheme for an IoT device with EH to select the edge device and the offloading rate according to the current battery level, the previous radio transmission rate to each edge device, and the predicted amount of the harvested energy. This scheme enables the IoT device to optimize the offloading policy without knowledge of the MEC model, the energy consumption model, and the computation latency model. Further, we present a deep RL-based offloading scheme to further accelerate the learning speed. Their performance bounds in terms of the energy consumption, computation latency, and utility are provided for three typical offloading scenarios and verified via simulations for an IoT device that uses wireless power transfer for energy harvesting. Simulation results show that the proposed RL-based offloading scheme reduces the energy consumption, computation latency, and task drop rate, and thus increases the utility of the IoT device in the dynamic MEC in comparison with the benchmark offloading schemes.

409 citations

Journal ArticleDOI
TL;DR: Preassembled bpy and Zr6(μ3-O)4( μ3-OH)4 sites in UiO-bpy metal-organic frameworks (MOFs) are reported to be used to anchor ultrasmall Cu/ZnOx nanoparticles, thus preventing the agglomeration of Cu NPs and phase separation between Cu and ZnOx in MOF-cavity-confined Cu/ Zn Ox nanoparticles.
Abstract: The interfaces of Cu/ZnO and Cu/ZrO2 play vital roles in the hydrogenation of CO2 to methanol by these composite catalysts. Surface structural reorganization and particle growth during catalysis deleteriously reduce these active interfaces, diminishing both catalytic activities and MeOH selectivities. Here we report the use of preassembled bpy and Zr6(μ3-O)4(μ3-OH)4 sites in UiO-bpy metal–organic frameworks (MOFs) to anchor ultrasmall Cu/ZnOx nanoparticles, thus preventing the agglomeration of Cu NPs and phase separation between Cu and ZnOx in MOF-cavity-confined Cu/ZnOx nanoparticles. The resultant Cu/ZnOx@MOF catalysts show very high activity with a space–time yield of up to 2.59 gMeOH kgCu–1 h–1, 100% selectivity for CO2 hydrogenation to methanol, and high stability over 100 h. These new types of strong metal–support interactions between metallic nanoparticles and organic chelates/metal-oxo clusters offer new opportunities in fine-tuning catalytic activities and selectivities of metal nanoparticles@MOFs.

406 citations

Journal ArticleDOI
TL;DR: A guideline on the surveillance, diagnosis, staging, and treatment of HCC occurring in China is presented, and recommendations regarding patients with HCC in China are made to ensure optimum patient outcomes.
Abstract: Background Hepatocellular carcinoma (HCC) (about 85–90% of primary liver cancer) is particularly prevalent in China because of the high prevalence of chronic hepatitis B infection. HCC is the fourth most common malignancy and the third leading cause of tumor-related deaths in China. It poses a significant threat to the life and health of Chinese people.

406 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on surface and interface control of noble metal nanomaterials for catalytic and electrocatalytic applications, and discuss the challenges in catalysis-driven surface control of NM nanocrystals.

405 citations

Journal ArticleDOI
TL;DR: The key result is an abrupt 8.8% decrease in global CO2 emissions in the first half of 2020 compared to the same period in 2019, larger than during previous economic downturns or World War II.
Abstract: The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.

405 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022943
20216,784
20205,710
20194,982
20184,057