scispace - formally typeset
Search or ask a question

Showing papers in "Carcinogenesis in 2007"


Journal ArticleDOI
TL;DR: It is demonstrated that different analogs of curcumin present in turmeric exhibit variable anti-inflammatory and anti-proliferative activities, which do not correlate with their ability to modulate the ROS status.
Abstract: Curcumin, a component of turmeric (Curcuma longa), has been shown to exhibit chemopreventive activity. Whether analogs of curcumin (Cur), such as demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), tetrahydrocurcumin (THC) and turmerones, modulate inflammatory signaling and cell proliferation signaling to same extent as curcumin was investigated. The results indicate that the relative potency for suppression of tumor necrosis factor (TNF)-induced nuclear factor-kappaB (NF-kappaB) activation was Cur > DMC > BDMC; thus suggesting the critical role of methoxy groups on the phenyl ring. THC, which lacks the conjugated bonds in the central seven-carbon chain, was completely inactive for suppression of the transcription factor. Turmerones also failed to inhibit TNF-induced NF-kappaB activation. The suppression of NF-kappaB activity correlated with inhibition of NF-kappaB reporter activity and with down-regulation of cyclooxygenase-2, cyclin D1 and vascular endothelial growth factor, all regulated by NF-kappaB. In contrast to NF-kappaB activity, the suppression of proliferation of various tumor cell lines by Cur, DMC and BDMC was found to be comparable; indicating the methoxy groups play minimum role in the growth-modulatory effects of curcumin. THC and turmerones were also found to be active in suppression of cell growth but to a much lesser extent than curcumin, DMC and BDMC. Whether suppression of NF-kappaB or cell proliferation, no relationship of any of the curcuminoid was found with reactive oxygen species (ROS) production. Overall, our results demonstrated that different analogs of curcumin present in turmeric exhibit variable anti-inflammatory and anti-proliferative activities, which do not correlate with their ability to modulate the ROS status.

580 citations


Journal ArticleDOI
TL;DR: AKT is more than a passive bridge toward PTEN tumorigenesis, since its expression not only allows but also enforces and accelerates the tumorigenic process in combination with other oncogenes.
Abstract: Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT constitute an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase and its main substrate phosphatidyl-inositol 3,4,5 triphosphate (PIP3) is the product of PI3K. Increase in PIP3 recruits AKT to the membrane where is activated by other kinases also dependent on PIP3. Many components of this pathway have been described as causal forces in cancer. PTEN activity is lost by mutations, deletions or promoter methylation silencing at high frequency in many primary and metastatic human cancers. Germ line mutations of PTEN are found in several familial cancer predisposition syndromes. Recently, many activating mutations in the PI3KCA gene (coding for the p110alpha catalytic subunit of PI3K) have been described in human tumors. Activation of PI3K and AKT are reported to occur in breast, ovarian, pancreatic, esophageal and other cancers. Genetically modified mice confirm these PTEN activities. Tissue-specific deletions of PTEN usually provoke cancer. Moreover, an absence of PTEN cooperates with an absence of p53 to promote cancer. However, we have observed very different results with the expression of activated versions of AKT in several tissues. Activated AKT transgenic lines do not develop tumors in breast or prostate tissues and do not cooperate with an absence of p53. This data suggest that an AKT-independent mechanism contributes to PTEN tumorigenesis. Crosses with transgenic mice expressing possible PTEN targets indicate that neither cyclin D1 nor p53 are these AKT-independent targets. However, AKT is more than a passive bridge toward PTEN tumorigenesis, since its expression not only allows but also enforces and accelerates the tumorigenic process in combination with other oncogenes.

387 citations


Journal ArticleDOI
TL;DR: A potential role for FXR and BAs in hepatocarcinogenesis is revealed and increased cell proliferation is revealed as revealed by increased PCNA mRNA and BrdU incorporation.
Abstract: The farnesoid X receptor (FXR) controls the synthesis and transport of bile acids (BAs). Mice lacking expression of FXR, designated Fxr-null, have elevated levels of serum and hepatic BAs and an increase in BA pool size. Surprisingly, at 12 months of age, male and female Fxr-null mice had a high incidence of degenerative hepatic lesions, altered cell foci and liver tumors including hepatocellular adenoma, carcinoma and hepatocholangiocellular carcinoma, the latter of which is rarely observed in mice. At 3 months, Fxr-null mice had increased expression of the proinflammatory cytokine IL-1beta mRNA and elevated beta-catenin and its target gene c-myc. They also had increased cell proliferation as revealed by increased PCNA mRNA and BrdU incorporation. These studies reveal a potential role for FXR and BAs in hepatocarcinogenesis.

321 citations


Journal ArticleDOI
TL;DR: Findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer.
Abstract: Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. In this study, we sought to determine whether sulforaphane exerts a direct chemopreventive action on animal and human mammary tissue. The pharmacokinetics and pharmacodynamics of a single 150 mmol oral dose of sulforaphane were evaluated in the rat mammary gland. We detected sulforaphane metabolites at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provides strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 mmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer.

295 citations


Journal ArticleDOI
TL;DR: This study selected the 3' UTRs of 104 genes candidate for colorectal cancer and identified putative miRNA-binding sites by specialized algorithms, finding statistically significant associations between risk of CRC and variant alleles of CD86 and INSR genes.
Abstract: Recent evidence indicate that small non-coding RNA molecules, called micro-RNAs (miRNAs), can bind to the 3' untranslated regions (UTRs) of messenger RNAs and interfere with their translation, thereby regulating cell growth, differentiation, apoptosis and tumorigenesis. Genetic polymorphisms can reside on miRNA-binding sites. Thus, it is conceivable that the miRNA regulation may be affected by polymorphisms on the 3' UTRs. Since gene deregulation is one of the key mechanisms by which cells can progress to cancer, we hypothesize that common polymorphisms within miRNA-target binding sites could play a role in the individual risk of cancer. In the present study, we selected the 3' UTRs of 104 genes candidate for colorectal cancer (CRC) and we identified putative miRNA-binding sites by specialized algorithms (PicTar, DianaMicroT, miRBase, miRanda, TargetScan and microInspector). Fifty-seven single-nucleotide polymorphisms (SNPs) were identified in miRNA-binding sites. We evaluated the SNPs for their ability to affect the binding of the miRNA with its target, by assessing the variation of Gibbs free energy between the two alleles of each SNP. We found eight common polymorphisms that were further investigated by a case-control association studies. The study was carried out on a series of cases and controls from Czech Republic, a population with the highest worldwide incidence of CRC. We found statistically significant associations between risk of CRC and variant alleles of CD86 [odds ratio (OR) = 2.74; 95% confidence interval (CI) = 1.24-6.04, for the variant homozygotes] and INSR genes (OR = 1.94; 95% CI = 1.03-3.66, for the variant homozygotes). These results are the first reporting positive association between miRNA-binding SNPs sequences and cancer risk.

284 citations


Journal ArticleDOI
TL;DR: A protective effect for post-menopausal breast cancer through a better vitamin D supply as characterized by serum 25(OH)D measurement is suggested, with a stronger inverse association in women with low serum 25-hydroxyvitamin D concentrations (<50 nM).
Abstract: Various studies suggest that vitamin D may reduce breast cancer risk. Most studies assessed the effects of dietary intake only, although endogenous production is an important source of vitamin D. Therefore, the measurement of serum 25-hydroxyvitamin D [25(OH)D] better indicates overall vitamin D status. To assess the association of 25(OH)D serum concentrations with post-menopausal breast cancer risk, we used a population-based case-control study in Germany, which recruited incident breast cancer patients aged 50-74 between 2002 and 2005. Information on sociodemographic and breast cancer risk factors was collected by personal interview. For this analysis, we included 1394 cases and 1365 controls, matched on year of birth and time of blood collection. Conditional logistic regression was used to calculate odds ratios (ORs) for breast cancer adjusted for potential confounders. Serum 25(OH)D concentration was significantly inversely associated with post-menopausal breast cancer risk. Compared with the lowest category ( /=75 nM) were 0.57 (0.45-0.73), 0.49 (0.38-0.64), 0.43 (0.32-0.57) and 0.31 (0.24-0.42), respectively (P(trend) < 0.0001). Analysis using fractional polynomials indicated a non-linear association. The association was stronger in women never using menopausal hormone therapy (HT) compared with past and current users (P(interaction) < 0.0001). Our findings strongly suggest a protective effect for post-menopausal breast cancer through a better vitamin D supply as characterized by serum 25(OH)D measurement, with a stronger inverse association in women with low serum 25(OH)D concentrations (<50 nM).

272 citations


Journal ArticleDOI
TL;DR: Further studies are clearly warranted to elucidate the molecular and biological roles of miRNAs, which may ultimately provide both a better understanding of disease development, as well as a foundation for novel strategies for cancer diagnosis and therapy.
Abstract: MicroRNAs (miRNAs) encoding small non-coding RNAs have been recognized as a very large gene family present in most organisms. The precise biological effects of miRNAs are yet to be elucidated in detail, partly because each miRNA is believed to negatively regulate the expression of hundreds of target genes. Nevertheless, recent findings indicate that carcinogenic processes are associated with alterations in the expression of several miRNAs, suggesting that some function as oncogenes or tumor suppressor genes. The present review focuses on recent findings in this exciting new area of research, with special emphasis on the involvement of miRNAs in cancer development and progression. Further studies are clearly warranted to elucidate the molecular and biological roles of miRNAs, which may ultimately provide both a better understanding of disease development, as well as a foundation for novel strategies for cancer diagnosis and therapy.

247 citations


Journal ArticleDOI
TL;DR: The data supports the concept that chromatin acetylation and DNA methylation are found in a dynamic interrelation and that the consequences of HDAC inhibitors are not limited to changes in histone acetylations but that they also bring about a change in the state of modification of DNA.
Abstract: Valproate (VPA) 1 has been used for decades in the treatment of epilepsy, and is also effective as a mood stabilizer and in migraine therapy. It has been shown that VPA is also a histone deacetylase (HDAC) inhibitor. We have previously shown that VPA could trigger active demethylation of ectopically methylated transiently transfected DNA in HEK 293 cells. We therefore tested whether VPA treatment could bring about stable changes in the epigenome by causing changes in the state of DNA methylation of genomic DNA. Using a microarray gene expression analysis we identified the genes whose expression is induced by VPA treatment in HEK 293 cells. We found that a subset of these genes could also be induced by the classical DNA methylation inhibitor 5-aza-2′-deoxy-cytidine (5-aza-CdR) suggesting that VPA can alter the state of expression of genes, which are stably suppressed by DNA methylation. We mapped the state of methylation of three of these genes, MELANOMA ANTIGEN B2 GENE (MAGEB2), METALLOPROTEINASE 2 (MMP2) and WIF1, which are involved in tumor growth and metastasis. A chromatin immunoprecipitation (ChIP) assay revealed that VPA treatment caused as expected a change in the state of acetylation of these genes. Our data supports the concept that chromatin acetylation and DNA methylation are found in a dynamic interrelation and that the consequences of HDAC inhibitors are not limited to changes in histone acetylation but that they also bring about a change in the state of modification of DNA. The implications of our results on the future therapeutic utilities of VPA in cancer will be discussed.

235 citations


Journal ArticleDOI
TL;DR: Survivin is a bifunctional protein that acts as a suppressor of apoptosis and plays a central role in cell division and has been proposed as an attractive target for new anticancer interventions as discussed by the authors.
Abstract: Survivin is a bifunctional protein that acts as a suppressor of apoptosis and plays a central role in cell division. The protein is strongly expressed in the most common human neoplasms, has prognostic relevance for some of them and appears to be involved in tumor cell resistance to anticancer agents and ionizing radiation. On the basis of these findings, survivin has been proposed as an attractive target for new anticancer interventions. Several preclinical studies have demonstrated that down-regulation of survivin expression or function, accomplished by means of various strategies, reduced tumor growth potential, increased the apoptotic rate and sensitized tumor cells to chemotherapeutic drugs and radiation in different human tumor models. Moreover, the first survivin inhibitors recently entered clinical trials. Recent studies suggest a possible role for survivin in regulating the function of normal adult cells. However, the expression and function of survivin in normal tissues are still not well characterized and understood. Better knowledge of the role of survivin in tumor versus normal cells will be instrumental for the design of optimal strategies to selectively disrupt survivin in cancer.

233 citations


Journal ArticleDOI
TL;DR: This study is the first to report conclusive evidence of the long-term persistence of bystander effects in radiation carcinogenesis target organ (spleen) upon localized distant exposure using the doses comparable with those used for clinical brain tumor treatments.
Abstract: Radiation therapy is a primary treatment modality for brain tumors, yet it has been linked to the increased incidence of secondary, post-radiation therapy cancers. These cancers are thought to be linked to indirect radiation-induced bystander effect. Bystander effect occurs when irradiated cells communicate damage to nearby, non-irradiated 'bystander' cells, ultimately contributing to genome destabilization in the non-exposed cells. Recent evidence suggests that bystander effect may be epigenetic in nature; however, characterization of epigenetic mechanisms involved in bystander effect generation and its long-term persistence has yet to be defined. To investigate the possibility that localized X-ray irradiation induces persistent bystander effects in distant tissue, we monitored the induction of epigenetic changes (i.e. alterations in DNA methylation, histone methylation and microRNA (miRNA) expression) in the rat spleen tissue 24 h and 7 months after localized cranial exposure to 20 Gy of X-rays. We found that localized cranial radiation exposure led to the induction of bystander effect in lead-shielded, distant spleen tissue. Specifically, this exposure caused the profound epigenetic dysregulation in the bystander spleen tissue that manifested as a significant loss of global DNA methylation, alterations in methylation of long interspersed nucleotide element-1 (LINE-1) retrotransposable elements and down-regulation of DNA methyltransferases and methyl-binding protein methyl CpG binding protein 2 (MeCP2). Further, irradiation significantly altered expression of miR-194, a miRNA putatively targeting both DNA methyltransferase-3a and MeCP2. This study is the first to report conclusive evidence of the long-term persistence of bystander effects in radiation carcinogenesis target organ (spleen) upon localized distant exposure using the doses comparable with those used for clinical brain tumor treatments.

207 citations


Journal ArticleDOI
TL;DR: It is shown that H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is induced in all phases of the cell cycle and is mediated primarily by the ATR kinase.
Abstract: It has been suggested that phosphorylation of the histone variant H2AX after ultraviolet light (UV) irradiation is triggered by DNA double-strand breaks induced as replication forks collide with UV-induced bulky lesions. More recently, it has been shown that UV-induced H2AX phosphorylation can also occur outside of S-phase, but the mechanism for this replication-independent induction is not well understood. In this study, we show that H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is induced in all phases of the cell cycle. Accumulation of DNA repair intermediates by inhibition of DNA repair synthesis resulted in a marked increase of H2AX phosphorylation in repair proficient but not repair-deficient xeroderma pigmentosum-A cells. Using chemical inhibitors of the PI(3)-like kinase family of protein kinases as well as ataxia telangiectasia mutated and Rad-3 related (ATR)-deficient Seckel syndrome cells and ataxia telangiectasia mutated-deficient ataxia telangiectasia cells, we show that the H2AX phosphorylation induced by accumulation of repair intermediates is mediated primarily by the ATR kinase. We suggest a model for UV light-induced phosphorylation of H2AX where in addition to replication blockage, DNA repair intermediates trigger H2AX phosphorylation via the ATR kinase.

Journal ArticleDOI
TL;DR: The NDRG1 gene may be an efficient diagnostic tool and therapy in many types of cancers and its regulation is somewhat complex, governed by hypoxia-inducible factor 1 alpha (HIF-1alpha)- and p53-dependent pathways, and probably many other factors, at the transcriptional and translational levels, and through mRNA stability.
Abstract: N-myc downstream-regulated gene 1 (NDRG1) is an intracellular protein that is induced under a wide variety of stress and cell growth-regulatory conditions. NDRG1 is up-regulated by cell differentiation signals in various cancer cell lines and suppresses tumor metastasis. Despite its specific role in the molecular cause of Charcot-Marie-Tooth type 4D disease, there has been more interest in the gene as a marker of tumor progression and enhancer of cellular differentiation. Because it is strongly up-regulated under hypoxic conditions, and this condition is prevalent in solid tumors, its regulation is somewhat complex, governed by hypoxia-inducible factor 1 alpha (HIF-1alpha)- and p53-dependent pathways, as well as its namesake, neuroblastoma-derived myelocytomatosis, and probably many other factors, at the transcriptional and translational levels, and through mRNA stability. We survey the data for clues to the NDRG1 gene's mechanism and for indications that the NDRG1 gene may be an efficient diagnostic tool and therapy in many types of cancers.

Journal ArticleDOI
TL;DR: It is demonstrated that Dickkopfs (Dkks) are frequent targets of epigenetic silencing in gastrointestinal tumors, and that loss of DKKs may facilitate tumorigenesis through beta-catenin/T-cell factor-independent mechanisms.
Abstract: Activation of Wnt signaling has been implicated in tumorigenesis, and epigenetic silencing of Wnt antagonist genes has been detected in various cancers. In the present study, we examined the expression and methylation of DICKKOPF (DKK) family genes in gastrointestinal cancer cell lines. We found that all known DKK genes were frequently silenced in colorectal cancer (CRC) cells (DKK1, 3/9, 33%; DKK2, 8/9, 89%; DKK3, 5/9, 56% and DKK4, 5/9, 56%), but not in normal colon mucosa. DKK1, -2 and -3 have 5' CpG islands, and show an inverse relation between expression and methylation. DKK methylation also was frequently observed in gastric cancer (GC) cell lines (DKK1, 6/16, 38%; DKK2, 15/16, 94% and DKK3, 10/16, 63%), but was seen less frequently in hepatocellular carcinoma and pancreatic cancer cell lines. DKKs also were frequently methylated in primary CRCs (DKK1, 7/58, 12%; DKK2, 45/58, 78% and DKK3, 12/58, 21%) and GCs (DKK1, 15/31, 48%; DKK2, 26/31, 84% and DKK3, 12/31, 39%). Against a background of CTNNB1 or APC mutations, Dickkopfs (Dkks) were less effective inhibitors of Wnt signaling than secreted frizzled-related proteins, though over-expression of Dkks suppressed colony formation of CRC cells with such mutations. Our results demonstrate that DKKs are frequent targets of epigenetic silencing in gastrointestinal tumors, and that loss of DKKs may facilitate tumorigenesis through beta-catenin/T-cell factor-independent mechanisms.

Journal ArticleDOI
TL;DR: Alterations of DNA methylation may become an indicator for carcinogenetic risk estimation and early diagnosis of cancers and a biological predictor of poor prognosis in patients with cancers.
Abstract: Alterations of DNA methylation are one of the most consistent epigenetic changes in human cancers. Human cancers generally show global DNA hypomethylation accompanied by region-specific hypermethylation. Alterations of DNA methylation may result in chromosomal instability as a result of changes in chromatin structure. DNA hypermethylation of CpG islands silences various tumor-related genes. Alterations of DNA methylation are frequently observed in cancers associated with chronic inflammation and/or persistent infection with viruses or other pathogenic microorganisms, such as hepatitis B or C viruses, Epstein-Barr virus, human papillomavirus and Helicobacter pylori, or with cigarette smoking. Accumulating evidence suggests that alterations of DNA methylation are involved even in the early and precancerous stages. On the other hand, in patients with cancers, aberrant DNA methylation is significantly associated with poorer tumor differentiation, tumor aggressiveness and poor prognosis. Precancerous conditions showing alterations of DNA methylation may progress rapidly and generate more malignant cancers. DNA methyltransferase (DNMT) 1 over-expression is not a secondary result of increased cell proliferative activity but is significantly correlated with the CpG island methylator phenotype, which is defined as frequent DNA hypermethylation of C-type CpG islands that are usually methylated in a cancer-specific (not age-dependent) manner. Splicing alteration of DNMT3b may result in chromosomal instability through DNA hypomethylation of pericentromeric satellite regions. Alteration of DNA methylation may become an indicator for carcinogenetic risk estimation and early diagnosis of cancers and a biological predictor of poor prognosis in patients with cancers. Correction of DNA methylation status may offer a new strategy for prevention and therapy of cancers.

Journal ArticleDOI
TL;DR: This is the first report showing that the cytotoxic activities of potato extract/AF in cancer cells were due to activation of caspase-independent apoptosis.
Abstract: Polyphenols from fruits and vegetables exhibit anticancer properties both in vitro and in vivo and specialty potatoes are an excellent source of dietary polyphenols, including phenolic acids and anthocyanins. This study investigated the effects of specialty potato phenolics and their fractions on LNCaP (androgen dependent) and PC-3 (androgen independent) prostate cancer cells. Phenolic extracts from four specialty potato cultivars CO112F2-2, PATX99P32-2, ATTX98462-3 and ATTX98491-3 and organic acid, phenolic acid and anthocyanin fractions (AF) were used in this study. CO112F2-2 cultivar extracts and their AF at 5 mug chlorogenic acid eq/ml were more active and inhibited cell proliferation and increased the cyclin-dependent kinase inhibitor p27 levels in both LNCaP and PC-3 cells. Potato extract and AF induced apoptosis in both the cells and, however, the effects were cell context dependent. Cell death pathways induced by potato extract and AF were associated with mitogen-activated protein kinase and c-jun N-terminal kinase activation and these kinases activated caspase-independent apoptosis through nuclear translocation of endonuclease G (Endo G) and apoptosis-inducing factor in both cell lines. Induction of caspase-dependent apoptosis was also kinase dependent but was observed only in LNCaP cells. Kinase inhibitors reversed this nuclear translocation of endonuclease G and apoptosis-inducing factor. This is the first report showing that the cytotoxic activities of potato extract/AF in cancer cells were due to activation of caspase-independent apoptosis. Current studies are focused on identifying individual components of the AF responsible for the induction of cell death pathways in prostate and other cancer cell lines and developing potato cultivars that overexpress these active compounds.

Journal ArticleDOI
TL;DR: DKK-1 gene induction constitutes a novel mechanism of inhibition of Wnt signalling and antitumour action by 1,25(OH)2D3, and this effect is dose dependent, slow and depends on the presence of a transcription-competent nuclear vitamin D receptor (VDR).
Abstract: The Wnt-beta-catenin pathway is aberrantly activated in most colon cancers. DICKKOPF-1 (DKK-1) gene encodes an extracellular Wnt inhibitor that blocks the formation of signalling receptor complexes at the plasma membrane. We report that 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, increases the level of DKK-1 RNA and protein in human SW480-ADH colon cancer cells. This effect is dose dependent, slow and depends on the presence of a transcription-competent nuclear vitamin D receptor (VDR). Accordingly, 1,25(OH)2D3 activates a 2300 bp fragment of the human DKK-1 gene promoter. Chromatin immunoprecipitation assays revealed that 1,25(OH)2D3 treatment induced a pattern of histone modifications which is compatible with transcriptionally active chromatin. DKK-1 is expressed at high level in colon cancer cell lines with a differentiated phenotype such as Caco-2 or HT-29. Exogenous expression of E-cadherin into SW480-ADH cells results in a strong adhesive phenotype and a 17-fold increase in DKK-1 RNA. In contrast, an E-cadherin blocking antibody inhibits 1,25(OH)2D3-induced differentiation of SW480-ADH cells and DKK-1 gene expression. Remarkably, in vivo treatment with the vitamin D analogue EB1089 induced DKK-1 protein expression in SW480-ADH cells xenografted in immunodeficient mice, and a correlation was observed in the expression of VDR and DKK-1 RNA in a series of 32 human colorectal tumours. These data indicate that 1,25(OH)2D3 activates the transcription of the DKK-1 gene, probably in an indirect way that is associated to the promotion of a differentiated phenotype. DKK-1 gene induction constitutes a novel mechanism of inhibition of Wnt signalling and antitumour action by 1,25(OH)2D3.

Journal ArticleDOI
TL;DR: It is suggested that up-regulation of MKP5 by phytochemicals may contribute to their chemopreventive actions by decreasing prostatic inflammation.
Abstract: As inflammation emerges as a risk factor for prostate cancer (PCa), there is potential for chemoprevention by anti-inflammatory agents. Dietary phytochemicals have been shown to have chemopreventive properties which may include anti-inflammatory activities. In this study, we demonstrate a role for mitogen-activated protein kinase phosphatase-5 (MKP5) in mediating anti-inflammatory activities of the phytochemicals curcumin, resveratrol and [6]-gingerol. We utilized the cytokines tumor necrosis factor-alpha (TNFalpha) and interleukin (IL)-1beta to increase p38-dependent nuclear factor kappa-B (NFkappaB) activation and expression of pro-inflammatory genes cyclooxygenase-2 (COX-2), IL-6 and IL-8 in normal prostatic epithelial cells. MKP5 over-expression decreased cytokine-induced NFkappaB activation, COX-2, IL-6 and IL-8 in normal prostatic epithelial cells, suggesting potent anti-inflammatory activity of MKP5. Pretreatment of cells with a p38 inhibitor mimicked the results observed with MKP5 over-expression, further implicating p38 inhibition as the main activity of MKP5. Curcumin, the phytochemical found in turmeric, up-regulated MKP5, subsequently decreasing cytokine-induced p38-dependent pro-inflammatory changes in normal prostatic epithelial cells. Resveratrol and [6]-gingerol, phytochemicals present in red wine and ginger, respectively, also up-regulated MKP5 in normal prostate epithelial cells. Moreover, we found that PCa cell lines DU 145, PC-3, LNCaP and LAPC-4 retained the ability to up-regulate MKP5 following curcumin, resveratrol and [6]-gingerol exposure, suggesting utility of these phytochemicals in PCa treatment. In summary, our findings show direct anti-inflammatory activity of MKP5 in prostate cells and suggest that up-regulation of MKP5 by phytochemicals may contribute to their chemopreventive actions by decreasing prostatic inflammation.

Journal ArticleDOI
TL;DR: The findings indicate that Shh promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway, indicating potential therapeutic molecular targets to decrease metastasis.
Abstract: It is known that the activation of hedgehog (Hh) signaling is involved in the progression and invasion of various tumors, including gastric carcinoma. In this study, we investigated the impact of transforming growth factor (TGF)-beta signaling on the sonic hedgehog (Shh)-mediated invasion of gastric cancer cells. We found that higher concentrations of N-Shh enhanced cell motility and invasiveness in gastric cancer cells, whereas no increase was observed in cells that were treated with KAAD-cyclopamine (a Shh signaling inhibitor) or anti-Shh blocking antibodies. In addition, the N-Shh-induced migration and invasiveness of gastric cancer cells were reduced by treatment with anti-TGF-beta blocking antibody or TGF-beta1 small interfering RNA (siRNA) in presence of N-Shh when compared with control groups. Furthermore, TGF-beta1 secretion, TGF-beta-mediated transcriptional response, expression of activin receptor-like kinase (ALK) 5 protein and phosphorylation of Smad 3 were also enhanced by treatment with N-Shh, but not KAAD-cyclopamine, anti-Shh or TGF-beta1 blocking antibodies. Blockade of the ALK5 kinase in the presence of N-Shh significantly inhibited phosphorylation of Smad 3, activity of matrix metalloproteinases and Shh-induced cell motility/invasiveness. Importantly, transient expression of ALK5 siRNA or Smad 3 siRNA reduced the ability of N-Shh to stimulate migration and invasion of those cells compared with the cells treated with non-specific control siRNA. In summary, these results indicate that Shh promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Additionally, our findings are the first to suggest a role and mechanism for Shh signaling as it relates to the metastatic potential of gastric cancer, thereby indicating potential therapeutic molecular targets to decrease metastasis.

Journal ArticleDOI
TL;DR: Treatment of OvCa cells with BMP4 produced morphological alterations and increased cellular adhesion, motility and invasion, suggesting a link between autocrine BMP signalling mediated through the Rho GTPase family and Snail- and Slug-induced EMT that may collectively contribute to aggressive OvCa behaviour.
Abstract: We identified previously an autocrine bone morphogenetic protein-4 (BMP4) signalling pathway in primary human normal ovarian surface epithelial (OSE) and epithelial ovarian cancer (OvCa) cells. Herein we show that treatment of OvCa cells with BMP4 produced morphological alterations and increased cellular adhesion, motility and invasion. The BMP4 inhibitor noggin blocked the BMP4-induced phenotype, and decreased autocrine BMP4-mediated OvCa cell motility and adherence. In response to exogenous BMP4, the epithelial-mesenchymal transition (EMT) markers Snail and Slug mRNA and protein were up-regulated, E-cadherin mRNA and protein were down-regulated and the network of alpha smooth muscle actin changed to resemble a mesenchymal cell. We also observed changes in the level of activated Rho GTPases in OvCa cells treated with BMP4, strongly suggesting that the changes in morphology, adhesion, motility and invasion are probably mediated through the activation of these molecules. Strikingly, treatment of normal OSE cells with BMP4 or noggin failed to alter cell motility, providing evidence that OSE and OvCa cells possess a distinct capability to respond to BMP4. Overall, our studies suggest a link between autocrine BMP signalling mediated through the Rho GTPase family and Snail- and Slug-induced EMT that may collectively contribute to aggressive OvCa behaviour.

Journal ArticleDOI
TL;DR: WNT5A is found to be important target of CUTL1 and as novel mediator of invasiveness and tumor progression in pancreatic cancer, using RT-PCR and immunohistochemistry.
Abstract: Previously, we have identified the transcription factor CUTL1 as an important mediator of tumor invasion and target of tumor growth factor-beta. Using high-throughput approaches, we identified several putative downstream effectors of CUTL1, among them WNT5A, a secreted member of the Wnt multigene family. The aim of this study was to investigate the role of WNT5A as a novel target of CUTL1 in pancreatic cancer. CUTL1 and WNT5A were stably over-expressed as well as transiently and stably knocked down by RNA interference. Effects on proliferation, migration and invasiveness were investigated by thymidine incorporation, Boyden chamber experiments and time-lapse microscopy. Expression of WNT5A in pancreatic cancer tissues was analyzed by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. We found that CUTL1 transcriptionally up-regulated WNT5A on RNA, protein and promoter level. WNT5A significantly enhanced migration, proliferation and invasiveness, mediating the pro-invasive effects of CUTL1 to a major extent. WNT5A effects were accompanied by a marked modulation of marker genes associated with epithelial-mesenchymal transition. Using RT-PCR and immunohistochemistry, we found that WNT5A is up-regulated early during pancreatic cancerogenesis in pancreatic intraepithelial neoplasias lesions and in invasive pancreatic adenocarcinomas, as compared with normal pancreas tissues. These data identify WNT5A as important target of CUTL1 and as novel mediator of invasiveness and tumor progression in pancreatic cancer.

Journal ArticleDOI
TL;DR: This work proposes an approach to investigate AA-induced mutagenesis in BEN that can provide molecular clues to the aetiology of its associated urothelial cancer.
Abstract: Balkan endemic nephropathy (BEN) is found in certain rural areas of the Balkans and affects at least 25,000 inhabitants. Of the many hypotheses on BEN, the Aristolochia hypothesis has recently gained ground substantiated by the investigations on aristolochic acid nephropathy (AAN). On both clinical and morphological grounds, AAN is very similar to BEN. That exposure to aristolochic acid (AA) of individuals living in endemic areas through consumption of bread made with flour contaminated with seeds of Aristolochia clematitis is responsible for BEN is an old hypothesis, but one which is fully consistent with the unique epidemiologic features of BEN. Here, we propose an approach to investigate AA-induced mutagenesis in BEN that can provide molecular clues to the aetiology of its associated urothelial cancer. The molecular mechanism of AA-induced carcinogenesis demonstrates a strong association between DNA adduct formation, mutation pattern and tumour development. A clear link between urothelial tumours, p53 mutations and AA exposure should emerge as more tumour DNA from BEN patients from different endemic areas becomes available for mutation analysis. We predict that the observed p53 mutation spectrum will be dominated by AT --> TA transversion mutations as has already been demonstrated in the human p53 gene of immortalized cells after exposure to AAI and urothelial tumours from BEN patients in Croatia. Moreover, the detection of AA-specific DNA adducts in renal tissue of a number of BEN patients and individuals living in areas endemic for BEN in Croatia provides new evidence that chronic exposure to AA is a risk factor for BEN and its associated cancer.

Journal ArticleDOI
TL;DR: Functional relevant loss of CYLD expression may contribute to tumor development and progression, and may provide a new target for therapeutic strategies.
Abstract: CYLD was originally identified as a tumor suppressor that is mutated in familial cylindromatosis. Recent studies suggested a role for CYLD in nuclear factor-kappaB (NF-kappaB) regulation. NF-kappaB activation has been connected with multiple aspects of oncogenesis but the underlying molecular mechanisms of persistent NF-kappaB activation in tumors remain largely unknown. Thus, we evaluated CYLD transcription in different colon and hepatocellular carcinoma cell lines and tissue samples, respectively. CYLD was downregulated or lost in all tumor cell lines investigated as compared with primary human colonic epithelial cells and hepatocytes, respectively. Further, quantitative PCR analysis revealed reduced CYLD mRNA expression in most tumor samples compared with non-tumorous tissue. Analysis on protein level confirmed these findings. Functional assays with CYLD transfected cell lines revealed that CYLD expression decreased NF-kappaB activity. Thus, functional relevant loss of CYLD expression may contribute to tumor development and progression, and may provide a new target for therapeutic strategies.

Journal ArticleDOI
TL;DR: The decrease in cell proliferation and the potent growth factor, IGF-1, the down-regulation of downstream effectors, phospho-ERKs 1 and 2 and the increase in the putative tumor suppressor, estrogen receptor-beta, provide a biochemical basis for resveratrol suppressing prostate cancer development.
Abstract: Resveratrol, a natural polyphenolic phytochemical, has been reported to act as an antioxidant and provide anticancer activities. We hypothesized that resveratrol would exert a chemopreventive effect against prostate cancer via regulation of sex steroid receptor and growth factor signaling pathways. In the current study, Transgenic Adenocarcinoma Mouse Prostate males were fed resveratrol (625 mg resveratrol per kg AIN-76A diet) or phytoestrogen-free, control diet (AIN-76A) starting at 5 weeks of age. Mechanisms of action and histopathology studies were conducted at 12 and 28 weeks of age, respectively. Resveratrol in the diet significantly reduced the incidence of poorly differentiated prostatic adenocarcinoma by 7.7-fold. In the dorsolateral prostate, resveratrol significantly inhibited cell proliferation, increased androgen receptor, estrogen receptor-beta, and insulin-like growth factor-1 receptor, and significantly decreased insulin-like growth factor (IGF)-1 and phospho-extracellular regulating kinase 1 (phospho-ERK 1). In the ventral prostate, resveratrol significantly reduced cell proliferation and phospho-ERKs 1 and 2, but did not significantly alter insulin-like growth factor-1 receptor and IGF-1. Serum total testosterone, free testosterone, estradiol, dihydrotestosterone and sex hormone-binding globulin (SHBG) concentrations and Simian Virus-40 large T antigen expression in the prostate were not altered in resveratrol-treated mice. Total resveratrol concentration in the blood serum of 12-week-old mice treated for 3 weeks with 625 mg resveratrol per kg diet was 52 +/- 18 nM. The decrease in cell proliferation and the potent growth factor, IGF-1, the down-regulation of downstream effectors, phospho-ERKs 1 and 2 and the increase in the putative tumor suppressor, estrogen receptor-beta, provide a biochemical basis for resveratrol suppressing prostate cancer development.

Journal ArticleDOI
TL;DR: The results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation.
Abstract: EGFRvIII is a mutant variant of the epidermal growth factor receptor (EGFR) found exclusively in various cancer types. EGFRvIII lacks a large part of the extracellular domain and is unable to bind ligands; however, the receptor is constitutively phosphorylated and able to activate downstream signaling pathways. Failure to attenuate signaling by receptor down-regulation could be one of the major mechanisms by which EGFRvIII becomes oncogenic. Using a cell system expressing either EGFR or EGFRvIII with no expression of other EGFR family members and with endogenous levels of key degradation proteins, we have investigated the down-regulation of EGFRvIII and compared it to that of EGFR. We show that, in contrast to EGFR, EGFRvIII is inefficiently degraded. EGFRvIII is internalized, but the internalization rate of the mutated receptor is significantly less than that of unstimulated EGFR. Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation.

Journal ArticleDOI
TL;DR: The finding that GSTM1 null genotype is a risk factor to OSCC among Indian tobacco habits; GSTT1null genotype emerged as a protective factor is supported.
Abstract: Oral cancer is the leading cancer type among Southeast Asian men and is causally associated with the use of tobacco. Genetic polymorphisms in xenobiotic-metabolizing enzymes modify the effect of environmental exposures, thereby playing a significant role in gene-environment interactions and hence contribute to the high degree of variance in individual susceptibility to cancer risk. This study investigates the role of polymorphisms at CYP1A1, GSTM1 and GSTT1 to oral squamous cell carcinoma (OSCC) in a case-control study involving 155 patients with precancerous lesions, 458 cancer patients and 729 age and habit-matched controls. Genotypes at these loci were determined by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism performed on genomic DNA extracted from peripheral blood lymphocytes. Risk to oral cancer was estimated among different tobacco exposure groups and doses using logistic regression analysis. GSTM1 null genotype conferred 1.29-fold increased risk [95% confidence interval (CI), 1.04-1.65] to OSCC. GSTT1 null genotype, however, conferred 0.57 times reduced risk to OSCC (95% CI, 0.39-0.83), specifically among tobacco chewers (odds ratio 0.27; 95% CI, 0.14-0.53). This risk was further reduced to 0.13 times (95% CI, 0.04-0.46) with increase in lifetime exposure to tobacco. We also investigated risk conferred by these genotypes at two different intra-oral sites, buccal mucosa and tongue. We found increased susceptibility to buccal mucosa cancer among individuals carrying these genetic markers. These results support the finding that GSTM1 null genotype is a risk factor to OSCC among Indian tobacco habits; GSTT1 null genotype, however, emerged as a protective factor.

Journal ArticleDOI
TL;DR: It is suggested that pomegranate fruit extract can be a useful chemopreventive/chemotherapeutic agent against human lung cancer.
Abstract: Developing novel mechanism-based chemopreventive approaches for lung cancer through the use of dietary substances which humans can accept has become an important goal. In the present study, employing normal human bronchial epithelial cells (NHBE) and human lung carcinoma A549 cells, we first compared the growth inhibitory effects of pomegranate fruit extract (PFE). Treatment of PFE (50-150 microg/ml) for 72 h was found to result in a decrease in the viability of A549 cells but had only minimal effects on NHBE cells as assessed by the MTT and Trypan blue assays. PFE treatment of A549 cells also resulted in dose-dependent arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis). We further found that PFE treatment also resulted in (i) induction of WAF1/p21 and KIP1/p27, (ii) decrease in the protein expressions of cyclins D1, D2 and E, and (iii) decrease in cyclin-dependent kinase (cdk) 2, cdk4 and cdk6 expression. The treatment of cells with PFE inhibited (i) phosphorylation of MAPK proteins, (ii) inhibition of PI3K, (iii) phosphorylation of Akt at Thr308, (iv) NF-kappaB and IKKalpha, (v) degradation and phosphorylation of IkappaBalpha, and (vi) Ki-67 and PCNA. We also found that PFE treatment to A549 cells resulted in inhibition of NF-kappaB DNA-binding activity. Oral administration of PFE (0.1 and 0.2%, wt/vol) to athymic nude mice implanted with A549 cells resulted in a significant inhibition in tumor growth. Our results provide a suggestion that PFE can be a useful chemopreventive/chemotherapeutic agent against human lung cancer.

Journal ArticleDOI
TL;DR: It is demonstrated that the anti-invasive effects of the LAB on the PMA-induced HepG(2) cells might be through inhibiting the phosphorylation of ERK1/2 and reducing AP-1 and NF-kappaB DNA-binding activities, leading to downregulation of MMP-9 expression.
Abstract: Ganoderma lucidum has been reported to be associated with suppressed motility, invasion and metastasis of several types of cancers, but its mechanism of action remains unclear. In our previous study, lucidenic acids A, B, C and N were isolated from a new strain of G.lucidum and all of them were found to have potential anti-invasive activity on phorbol-12-myristate-13-acetate (PMA)-induced HepG(2) cells by suppressing the matrix metalloproteinase (MMP)-9 activity. Here, the lucidenic acid B (LAB) was used to explore its mechanisms underlying MMP-9 expression of HepG(2) cells. The results showed that the LAB suppressed PMA-induced MMP-9 activity in a dose-dependent transcriptional level. The suppression of PMA-induced MMP-9 expression of HepG(2) cells by LAB was through inactivating phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The treatment of mitogen-activated protein kinase kinase (MEK) inhibitors (PD98059 and U0126) and LAB to HepG(2) cells could result in a synergistic reduction on the MMP-9 expression along with an inhibition on cell invasion. Moreover, LAB also strongly inhibited PMA-stimulated nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) DNA-binding activities of HepG(2) cells in dose-dependent manners. A dose-dependent inhibition on protein levels of NF-kappaB, c-Jun and c-Fos in nuclear by LAB treatment was further observed. In conclusion, we demonstrated that the anti-invasive effects of the LAB on the PMA-induced HepG(2) cells might be through inhibiting the phosphorylation of ERK1/2 and reducing AP-1 and NF-kappaB DNA-binding activities, leading to downregulation of MMP-9 expression.

Journal ArticleDOI
TL;DR: The NF-kappaB-activating pathways, induced by the dietary-related endogenous detergent DOC, provide mechanisms for promotion of colon cancer and identify possible new targets for chemoprevention.
Abstract: Nuclear factor kappa B (NF-kappaB) is a redox-associated transcription factor that is involved in the activation of survival pathways. We have previously shown that deoxycholate (DOC) activates NF-kappaB in hepatocytes and colon epithelial cells and that persistent exposure of HCT-116 cells to increasing concentrations of DOC results in the constitutive activation of NF-kappaB, which is associated with the development of apoptosis resistance. The mechanisms by which DOC activates NF-kappaB in colon epithelial cells, and whether natural antioxidants can reduce DOC-induced NF-kappaB activation, however, are not known. Also, it is not known if DOC can generate reactive oxygen species within mitochondria as a possible pathway of stress-related NF-kappaB activation. Since we have previously shown that DOC activates the NF-kappaB stress-response pathway in HCT-116 cells, we used this cell line to further explore the mechanisms of NF-kappaB activation. We found that DOC induces mitochondrial oxidative stress and activates NF-kappaB in HCT-116 cells through multiple mechanisms involving NAD(P)H oxidase, Na+/K+-ATPase, cytochrome P450, Ca++ and the terminal mitochondrial respiratory complex IV. DOC-induced NF-kappaB activation was significantly (P < 0.05) inhibited by pre-treatment of cells with CAPE, EGCG, TMS, DPI, NaN3, EGTA, Ouabain and RuR. The NF-kappaB-activating pathways, induced by the dietary-related endogenous detergent DOC, provide mechanisms for promotion of colon cancer and identify possible new targets for chemoprevention.

Journal ArticleDOI
TL;DR: The results indicate that AST could be an effective chemotherapeutic agent in colon cancer treatment, which might also be used as an adjuvant in combination with other orthodox chemtherapeutic drugs to reduce the side effects of the latter compounds.
Abstract: Astragalus memebranaceus is used as immunomodulating agent in treating immunodeficiency diseases and to alleviate the adverse effects of chemotherapeutic drugs. In recent years, it has been proposed that Astragalus may possess anti-tumorigenic potential in certain cancer cell types. In this study, the anti-carcinogenic effects of Astragalus saponin extract were investigated in HT-29 human colon cancer cells and tumor xenograft. Our findings have shown that Astragalus saponins (AST) inhibit cell proliferation through accumulation in S phase and G2/M arrest, with concomitant suppression of p21 expression and inhibition of cyclin-dependent kinase activity. Besides, AST promotes apoptosis in HT-29 cells through caspase 3 activation and poly(ADP-ribose) polymerase cleavage, which is indicated by DNA fragmentation and nuclear chromatin condensation. Nevertheless, we also demonstrate the anti-tumorigenic effects of AST in vivo, of which the reduction of tumor volume as well as pro-apoptotic and anti-proliferative effects in HT-29 nude mice xenograft are comparable with that produced by the conventional chemotherapeutic drug 5-fluorouracil (5-FU). In addition, the side effects (body weight drop and mortality) associated with the drug combo 5-FU and oxaliplatin are not induced by AST. These results indicate that AST could be an effective chemotherapeutic agent in colon cancer treatment, which might also be used as an adjuvant in combination with other orthodox chemotherapeutic drugs to reduce the side effects of the latter compounds.

Journal ArticleDOI
TL;DR: Hepatic CYP enzymes appear to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro, revealing an apparent paradox.
Abstract: Many studies using mammalian cellular and subcellular systems have demonstrated that polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are metabolically activated by cytochrome P450s (CYPs). In order to evaluate the role of hepatic versus extra-hepatic metabolism of BaP and its pharmacokinetics, we used the hepatic cytochrome P450 reductase null (HRN) mouse model, in which cytochrome P450 oxidoreductase, the unique electron donor to CYPs, is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated intraperitoneally (i.p.) with 125 mg/kg body wt BaP daily for up to 5 days. Clearance of BaP from blood was analysed by high-performance liquid chromatography with fluorescence detection. DNA adduct levels were measured by (32)P-post-labelling analysis with structural confirmation of the formation of 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene by liquid chromatography-tandem mass spectrometry analysis. Hepatic microsomes isolated from BaP-treated and untreated mice were also incubated with BaP and DNA in vitro. BaP-DNA adduct formation was up to 7-fold lower with the microsomes from HRN mice than with that from WT mice. Most of the hepatic microsomal activation of BaP in vitro was attributable to CYP1A. Pharmacokinetic analysis of BaP in blood revealed no significant differences between HRN and WT mice. BaP-DNA adduct levels were higher in the livers (up to 13-fold) and elevated in several extra-hepatic tissues of HRN mice (by 1.7- to 2.6-fold) relative to WT mice. These data reveal an apparent paradox, whereby hepatic CYP enzymes appear to be more important for detoxification of BaP in vivo, despite being involved in its metabolic activation in vitro.