scispace - formally typeset
Search or ask a question

Showing papers in "Diabetes in 2004"


Journal ArticleDOI
01 Dec 2004-Diabetes
TL;DR: Five stages in the progression of diabetes are proposed, each of which is characterized by different changes in beta-cell mass, phenotype, and function, which provides insight into the pathophysiology of both progression and remission of diabetes.
Abstract: This article proposes five stages in the progression of diabetes, each of which is characterized by different changes in β-cell mass, phenotype, and function. Stage 1 is compensation: insulin secretion increases to maintain normoglycemia in the face of insulin resistance and/or decreasing β-cell mass. This stage is characterized by maintenance of differentiated function with intact acute glucose-stimulated insulin secretion (GSIS). Stage 2 occurs when glucose levels start to rise, reaching ∼5.0–6.5 mmol/l; this is a stable state of β-cell adaptation with loss of β-cell mass and disruption of function as evidenced by diminished GSIS and β-cell dedifferentiation. Stage 3 is a transient unstable period of early decompensation in which glucose levels rise relatively rapidly to the frank diabetes of stage 4, which is characterized as stable decompensation with more severe β-cell dedifferentiation. Finally, stage 5 is characterized by severe decompensation representing a profound reduction in β-cell mass with progression to ketosis. Movement across stages 1–4 can be in either direction. For example, individuals with treated type 2 diabetes can move from stage 4 to stage 1 or stage 2. For type 1 diabetes, as remission develops, progression from stage 4 to stage 2 is typically found. Delineation of these stages provides insight into the pathophysiology of both progression and remission of diabetes.

1,029 citations


Journal ArticleDOI
01 Aug 2004-Diabetes
TL;DR: Although insulin resistance and central body fat are both associated with the metabolic syndrome, IAF is independently associated with all of the criteria, suggesting that it may have a pathophysiological role.
Abstract: The underlying pathophysiology of the metabolic syndrome is the subject of debate, with both insulin resistance and obesity considered as important factors. We evaluated the differential effects of insulin resistance and central body fat distribution in determining the metabolic syndrome as defined by the National Cholesterol Education Program (NCEP) Adult Treatment Panel III. In addition, we determined which NCEP criteria were associated with insulin resistance and central adiposity. The subjects, 218 healthy men ( n = 89) and women ( n = 129) with a broad range of age (26–75 years) and BMI (18.4–46.8 kg/m2), underwent quantification of the insulin sensitivity index ( S i) and intra-abdominal fat (IAF) and subcutaneous fat (SCF) areas. The metabolic syndrome was present in 34 (15.6%) of subjects who had a lower S i [median: 3.13 vs. 6.09 × 10−5 min−1/(pmol/l)] and higher IAF (166.3 vs. 79.1 cm2) and SCF (285.1 vs. 179.8 cm2) areas compared with subjects without the syndrome ( P < 0.001). Multivariate models including S i, IAF, and SCF demonstrated that each parameter was associated with the syndrome. However, IAF was independently associated with all five of the metabolic syndrome criteria. In multivariable models containing the criteria as covariates, waist circumference and triglyceride levels were independently associated with S i and IAF and SCF areas ( P < 0.001). Although insulin resistance and central body fat are both associated with the metabolic syndrome, IAF is independently associated with all of the criteria, suggesting that it may have a pathophysiological role. Of the NCEP criteria, waist circumference and triglycerides may best identify insulin resistance and visceral adiposity in individuals with a fasting plasma glucose <6.4 mmol/l.

982 citations


Journal ArticleDOI
01 Dec 2004-Diabetes
TL;DR: It is concluded that the high-fat diet-fed C57BL/6J mouse model is a robust model for IGT and early type 2 diabetes, which may be used for studies on pathophysiology and development of new treatment.
Abstract: This study characterizes the high-fat diet-fed mouse as a model for impaired glucose tolerance (IGT) and type 2 diabetes. Female C57BL/6J mice were fed a high-fat diet (58% energy by fat) or a normal diet (11% fat). Body weight was higher in mice fed the high-fat diet already after the first week, due to higher dietary intake in combination with lower metabolic efficiency. Circulating glucose increased after 1 week on high-fat diet and remained elevated at a level of approximately 1 mmol/l throughout the 12-month study period. In contrast, circulating insulin increased progressively by time. Intravenous glucose challenge revealed a severely compromised insulin response in association with marked glucose intolerance already after 1 week. To illustrate the usefulness of this model for the development of new treatment, mice were fed an orally active inhibitor of dipeptidyl peptidase-IV (LAF237) in the drinking water (0.3 mg/ml) for 4 weeks. This normalized glucose tolerance, as judged by an oral glucose tolerance test, in association with augmented insulin secretion. We conclude that the high-fat diet-fed C57BL/6J mouse model is a robust model for IGT and early type 2 diabetes, which may be used for studies on pathophysiology and development of new treatment.

966 citations


Journal ArticleDOI
01 Jan 2004-Diabetes
TL;DR: It is demonstrated that adverse metabolic stress factors in type 1 diabetes are associated with reduced EPC numbers and angiogenicity, and hypothesize that EPC dysfunction contributes to the pathogenesis of vascular complications intype 1 diabetes.
Abstract: Type 1 diabetes is associated with reduced vascular repair, as indicated by impaired wound healing and reduced collateral formation in ischemia. Recently, endothelial progenitor cells (EPCs) have been identified as important regulators of these processes. We therefore explored the concept that EPCs are dysfunctional in diabetes. The number of EPCs obtained from type 1 diabetic patients in culture was 44% lower compared with age- and sex-matched control subjects ( P < 0.001). This reduction was inversely related to levels of HbA1c ( R = −0.68, P = 0.01). In addition, we demonstrated that patient EPCs were also impaired in function using an in vitro angiogenesis assay. Conditioned media from patient EPCs were significantly reduced in their capacity to support endothelial tube formation in comparison to control EPCs. Therefore, despite culturing the EPCs under normoglycemic conditions, functional differences between patient and control EPCs were maintained. Our findings demonstrate that adverse metabolic stress factors in type 1 diabetes are associated with reduced EPC numbers and angiogenicity. We hypothesize that EPC dysfunction contributes to the pathogenesis of vascular complications in type 1 diabetes.

858 citations


Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: Evidence is reviewed that patients with type 2 diabetes continually undergo oxidative stress, that elevated glucose concentrations increase levels of reactive oxygen species inβ-cells, that islets have intrinsically low antioxidant enzyme defenses, and that antioxidant drugs and overexpression of antioxidant enzymes protect β-cells from glucose toxicity.
Abstract: The relentless decline in β-cell function frequently observed in type 2 diabetic patients, despite optimal drug management, has variously been attributed to glucose toxicity and lipotoxicity. The former theory posits hyperglycemia, an outcome of the disease, as a secondary force that further damages β-cells. The latter theory suggests that the often-associated defect of hyperlipidemia is a primary cause of β-cell dysfunction. We review evidence that patients with type 2 diabetes continually undergo oxidative stress, that elevated glucose concentrations increase levels of reactive oxygen species in β-cells, that islets have intrinsically low antioxidant enzyme defenses, that antioxidant drugs and overexpression of antioxidant enzymes protect β-cells from glucose toxicity, and that lipotoxicity, to the extent it can be attributable to hyperlipidemia, occurs only in the context of preexisting hyperglycemia, whereas glucose toxicity can occur in the absence of hyperlipidemia.

817 citations


Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: The hypothesis that patients with Alzheimer disease are more vulnerable to type 2 diabetes and the possibility of linkage between the processes responsible for loss of brain cells and beta-cells in these diseases are supported.
Abstract: Alzheimer disease and type 2 diabetes are characterized by increased prevalence with aging, a genetic predisposition, and comparable pathological features in the islet and brain (amyloid derived from amyloid protein in the brain in Alzheimer disease and islet amyloid derived from islet amyloid polypeptide in the pancreas in type 2 diabetes). Evidence is growing to link precursors of amyloid deposition in the brain and pancreas with the pathogenesis of Alzheimer disease and type 2 diabetes, respectively. Given these similarities, we questioned whether there may be a common underlying mechanism predisposing to islet and cerebral amyloid. To address this, we first examined the prevalence of type 2 diabetes in a community-based controlled study, the Mayo Clinic Alzheimer Disease Patient Registry (ADPR), which follows patients with Alzheimer disease versus control subjects without Alzheimer disease. In addition to this clinical study, we performed a pathological study of autopsy cases from this same community to determine whether there is an increased prevalence of islet amyloid in patients with Alzheimer disease and increased prevalence of cerebral amyloid in patients with type 2 diabetes. Patients who were enrolled in the ADPR (Alzheimer disease n 100, non–Alzheimer disease control subjects n 138) were classified according to fasting glucose concentration (FPG) as nondiabetic (FPG 126 mg/dl). The mean slope of FPG over 10 years in each case was also compared between Alzheimer disease and non–Alzheimer disease control subjects. Pancreas and brain were examined from autopsy specimens obtained from 105 humans (first, 28 cases of Alzheimer disease disease vs. 21 non–Alzheimer disease control subjects and, second, 35 subjects with type 2 diabetes vs. 21 non–type 2 diabetes control subjects) for the presence of islet and brain amyloid. Both type 2 diabetes (35% vs. 18%; P < 0.05) and IFG (46% vs. 24%; P < 0.01) were more prevalent in Alzheimer disease versus non–Alzheimer disease control subjects, so 81% of cases of Alzheimer disease had either type 2 diabetes or IFG. The slope of increase of FPG with age over 10 years was also greater in Alzheimer disease than non–Alzheimer disease control subjects (P < 0.01). Islet amyloid was more frequent (P < 0.05) and extensive (P < 0.05) in patients with Alzheimer disease than in non–Alzheimer disease control subjects. However, diffuse and neuritic plaques were not more common in type 2 diabetes than in control subjects. In cases of type 2 diabetes when they were present, the duration of type 2 diabetes correlated with the density of diffuse (P < 0.001) and neuritic plaques (P < 0.01). In this community cohort from southeast Minnesota, type 2 diabetes and IFG are more common in patients with Alzheimer disease than in control subjects, as is the pathological hallmark of type 2 diabetes, islet amyloid. However, there was no increase in brain plaque formation in cases of type 2 diabetes, although when it was present, it correlated in extent with duration of diabetes. These data support the hypothesis that patients with Alzheimer disease are more vulnerable to type 2 diabetes and the possibility of linkage between the processes responsible for loss of brain cells and -cells in these diseases. Diabetes 53: 474 – 481, 2004

815 citations


Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: The PPARs are major regulators of lipid and glucose metabolism, allowing adaptation to the prevailing nutritional environment, and their action on muscle insulin sensitivity may be secondary to the lowering of circulating lipids on PPAR-gamma activation.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the superfamily of nuclear receptors. Three isoforms (α, δ, and γ) have been described. They act on DNA response elements as heterodimers with the nuclear retinoic acid receptor. Their natural activating ligands are fatty acids and lipid-derived substrates. PPAR-α is present in liver, heart, and, to a lesser extent, skeletal muscle. When activated, it promotes fatty acid oxidation, ketone body synthesis, and glucose sparing. Fibrates, which are used as hypolipidemic drugs, are ligands of PPAR-α. PPAR-δ is ubiquitous and could also favor fatty acid oxidation in tissues in which PPAR-α is absent or less expressed. PPAR-γ is expressed in adipose tissue, lower intestine, and cells involved in immunity. Activation of PPAR-γ induces the differentiation of preadipocytes into adipocytes and stimulates triglyceride storage. Thiazolidinediones are compounds used as hypoglycemic, muscle insulin-sensitizing agents in type 2 diabetes. Unexpectedly, they are activators of PPAR-γ. Their action on muscle insulin sensitivity may be secondary to the lowering of circulating lipids on PPAR-γ activation and to the secretion by adipocytes of insulin-sensitizing hormones such as adiponectin, all promoting glucose utilization. The PPARs are thus major regulators of lipid and glucose metabolism, allowing adaptation to the prevailing nutritional environment.

769 citations


Journal ArticleDOI
01 Mar 2004-Diabetes
TL;DR: Elevated CRP levels are a strong independent predictor of type 2 diabetes and may mediate associations of TNF-alphaR2 and IL-6 with type 1 diabetes, supporting the role of inflammation in the pathogenesis of type2 diabetes.
Abstract: We conducted a prospective, nested, case-control study of inflammatory markers as predictors of type 2 diabetes among 32,826 women who provided blood samples in 1989 through 1990 in the Nurses' Health Study. Among women free of diabetes, cardiovascular disease, or cancer at baseline, 737 had developed diabetes by 2000. Control women (n = 785) were selected matched on age, fasting status, race, and BMI for cases in the top BMI decile. Baseline levels of tumor necrosis factor (TNF)-alpha receptor 2, interleukin (IL)-6, and C-reactive protein (CRP) were significantly higher among case than control subjects (all P

764 citations


Journal ArticleDOI
01 Jan 2004-Diabetes
TL;DR: Obesity is associated with increased intramyocellular ceramide content and this twofold increase in ceramide may be involved in the decrease in Akt phosphorylation observed after insulin infusion and could theoretically play a role in the reduced ability of insulin to stimulate glucose uptake in skeletal muscle from obese subjects.
Abstract: Increased intramyocellular lipid concentrations are thought to play a role in insulin resistance, but the precise nature of the lipid species that produce insulin resistance in human muscle are unknown. Ceramides, either generated via activation of sphingomyelinase or produced by de novo synthesis, induce insulin resistance in cultured cells by inhibitory effects on insulin signaling. The present study was undertaken to determine whether ceramides or other sphingolipids are increased in muscle from obese insulin-resistant subjects and to assess whether ceramide plays a role in the insulin resistance of Akt in human muscle. Lean insulin-sensitive and obese insulin-resistant subjects (n = 10 each) received euglycemic-hyperinsulinemic clamps with muscle biopsies basally and after 30, 45, or 60 min of insulin infusion. The rate of glucose infusion required to maintain euglycemia (reflecting glucose uptake) was reduced by >50%, as expected, in the obese subjects at each time point (P < 0.01). Under basal conditions, total muscle ceramide content was increased nearly twofold in the obese subjects (46 +/- 9 vs. 25 +/- 2 pmol/2 mg muscle, P < 0.05). All species of ceramides were increased similarly in the obese subjects; in contrast, no other sphingolipid was increased. Stimulation of Akt phosphorylation by insulin in the obese subjects was significantly reduced after 30 min (0.96 +/- 0.11 vs. 1.84 +/- 0.38 arbitrary units) or 45-60 min (0.68 +/- 0.17 vs. 1.52 +/- 0.26) of insulin infusion (P < 0.05 for both). Muscle ceramide content was significantly correlated with the plasma free fatty acid concentration (r = 0.51, P < 0.05). We conclude that obesity is associated with increased intramyocellular ceramide content. This twofold increase in ceramide may be involved in the decrease in Akt phosphorylation observed after insulin infusion and could theoretically play a role in the reduced ability of insulin to stimulate glucose uptake in skeletal muscle from obese subjects.

656 citations


Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: A review of the biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature is presented in this article.
Abstract: Hormones produced by adipose tissue play a critical role in the regulation of energy intake, energy expenditure, and lipid and carbohydrate metabolism. This review will address the biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature. The main biological role of leptin appears to be adaptation to reduced energy availability rather than prevention of obesity. In addition to the well-known consequences of absolute leptin deficiency, subjects with heterozygous leptin gene mutations have low circulating leptin levels and increased body adiposity. Leptin treatment dramatically improves metabolic abnormalities (insulin resistance and hyperlipidemia) in patients with relative leptin deficiency due to lipoatrophy. Leptin production is primarily regulated by insulin-induced changes of adipocyte metabolism. Dietary fat and fructose, which do not increase insulin secretion, lead to reduced leptin production, suggesting a mechanism for high-fat/high-sugar diets to increase energy intake and weight gain. ASP increases the efficiency of triacylglycerol synthesis in adipocytes leading to enhanced postprandial lipid clearance. In mice, ASP deficiency results in reduced body fat, obesity resistance, and improved insulin sensitivity. Adiponectin production is stimulated by thiazolidinedione agonists of peroxisome proliferator-activated receptor-gamma and may contribute to increased insulin sensitivity. Adiponectin and leptin cotreatment normalizes insulin action in lipoatrophic insulin-resistant animals. These effects may be mediated by AMP kinase-induced fat oxidation, leading to reduced intramyocellular and liver triglyceride content. The production of all three hormones is influenced by nutritional status. These hormones, the pathways controlling their production, and their receptors are promising targets for managing obesity, hyperlipidemia, and insulin resistance.

633 citations


Journal ArticleDOI
01 May 2004-Diabetes
TL;DR: Results indicate that adipokines, such as leptin, activate ECs, leading to an enhanced diapedesis of blood monocytes, and suggesting that fat mass growth might be linked to inflammatory processes.
Abstract: Obesity has been suggested to be a low-grade systemic inflammatory state, therefore we studied the interaction between human adipocytes and monocytes via adipose tissue (AT)-derived capillary endothelium. Cells composing the stroma-vascular fraction (SVF) of human ATs were characterized by fluorescence-activated cell sorter (FACS) analysis and two cell subsets (resident macrophages and endothelial cells [ECs]) were isolated using antibody-coupled microbeads. Media conditioned by mature adipocytes maintained in fibrin gels were applied to AT-derived ECs. Thereafter, the expression of endothelial adhesion molecules was analyzed as well as the adhesion and transmigration of human monocytes. FACS analysis showed that 11% of the SVF is composed of CD14 + /CD31 + cells, characterized as resident macrophages. A positive correlation was found between the BMI and the percentage of resident macrophages, suggesting that fat tissue growth is associated with a recruitment of blood monocytes. Incubation of AT-derived ECs with adipocyte-conditioned medium resulted in the upregulation of EC adhesion molecules and the increased chemotaxis of blood monocytes, an effect mimicked by recombinant human leptin. These results indicate that adipokines, such as leptin, activate ECs, leading to an enhanced diapedesis of blood monocytes, and suggesting that fat mass growth might be linked to inflammatory processes.

Journal Article
01 Jan 2004-Diabetes
TL;DR: The biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature are addressed.
Abstract: Hormones produced by adipose tissue play a critical role in the regulation of energy intake, energy expenditure, and lipid and carbohydrate metabolism. This review will address the biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature. The main biological role of leptin appears to be adaptation to reduced energy availability rather than prevention of obesity. In addition to the well-known consequences of absolute leptin deficiency, subjects with heterozygous leptin gene mutations have low circulating leptin levels and increased body adiposity. Leptin treatment dramatically improves metabolic abnormalities (insulin resistance and hyperlipidemia) in patients with relative leptin deficiency due to lipoatrophy. Leptin production is primarily regulated by insulin-induced changes of adipocyte metabolism. Dietary fat and fructose, which do not increase insulin secretion, lead to reduced leptin production, suggesting a mechanism for high-fat/high-sugar diets to increase energy intake and weight gain. ASP increases the efficiency of triacylglycerol synthesis in adipocytes leading to enhanced postprandial lipid clearance. In mice, ASP deficiency results in reduced body fat, obesity resistance, and improved insulin sensitivity. Adiponectin production is stimulated by thiazolidinedione agonists of peroxisome proliferator-activated receptor-γ and may contribute to increased insulin sensitivity. Adiponectin and leptin cotreatment normalizes insulin action in lipoatrophic insulin-resistant animals. These effects may be mediated by AMP kinase-induced fat oxidation, leading to reduced intramyocellular and liver triglyceride content. The production of all three hormones is influenced by nutritional status. These hormones, the pathways controlling their production, and their receptors are promising targets for managing obesity, hyperlipidemia, and insulin resistance.

Journal ArticleDOI
01 Jun 2004-Diabetes
TL;DR: The results suggest that insulin detemir has a significantly more predictable glucose-lowering effect than both NPH insulin and insulin glargine in people with type 1 diabetes.
Abstract: The aim of this randomized double-blind study was to compare the within-subject variability of the glucose-lowering effect of a novel insulin analog, insulin detemir, with that of insulin glargine and NPH insulin in people with type 1 diabetes Fifty-four subjects (32 males and 22 females, age 38 +/- 10 years [mean +/- SD], BMI 24 +/- 2 kg/m(2), HbA(1c) 75 +/- 12%, diabetes duration 18 +/- 9 years) participated in this parallel group comparison Each subject received four single subcutaneous doses of 04 units/kg of either insulin detemir (n = 18), insulin glargine (n = 16), or human NPH insulin (n = 17) under euglycemic glucose clamp conditions (target blood glucose concentration 55 mmol/l) on four identical study days The pharmacodynamic (glucose infusion rates [GIRs]) and pharmacokinetic (serum concentrations of insulin detemir, human insulin, and insulin glargine) properties of the basal insulin preparations were recorded for 24 h postdosing Insulin detemir was associated with significantly less within-subject variability than both NPH insulin and insulin glargine, as assessed by the coefficient of variation (CV) for the pharmacodynamic end points studied [GIR-AUC((0-12 h)) 27% (detemir) vs 59% (NPH) vs 46% (glargine); GIR-AUC((0-24 h)) 27 vs 68 vs 48%; GIR(max) 23 vs 46 vs 36%; P < 0001 for all comparisons] Insulin detemir also provided less within-subject variability in the pharmacokinetic end points: maximal concentration (C(max)) 18 vs 24 vs 34%; INS-AUC((0- infinity )) 14 vs 28 vs 33% The results suggest that insulin detemir has a significantly more predictable glucose-lowering effect than both NPH insulin and insulin glargine

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: It is found that strength training for 30 min three times per week increases insulin action in skeletal muscle in both groups, and the adaptation is attributable to local contraction-mediated mechanisms involving key proteins in the insulin signaling cascade.
Abstract: Strength training represents an alternative to endurance training for patients with type 2 diabetes. Little is known about the effect on insulin action and key proteins in skeletal muscle, and the necessary volume of strength training is unknown. A total of 10 type 2 diabetic subjects and 7 healthy men (control subjects) strength-trained one leg three times per week for 6 weeks while the other leg remained untrained. Each session lasted no more than 30 min. After strength training, muscle biopsies were obtained, and an isoglycemic-hyperinsulinemic clamp combined with arterio-femoral venous catheterization of both legs was carried out. In general, qualitatively similar responses were obtained in both groups. During the clamp, leg blood flow was higher (P < 0.05) in trained versus untrained legs, but despite this, arterio-venous extraction glucose did not decrease in trained legs. Thus, leg glucose clearance was increased in trained legs (P < 0.05) and more than explained by increases in muscle mass. Strength training increased protein content of GLUT4, insulin receptor, protein kinase B-alpha/beta, glycogen synthase (GS), and GS total activity. In conclusion, we found that strength training for 30 min three times per week increases insulin action in skeletal muscle in both groups. The adaptation is attributable to local contraction-mediated mechanisms involving key proteins in the insulin signaling cascade.

Journal ArticleDOI
01 Aug 2004-Diabetes
TL;DR: The objective of this study was to compare the effects of rosiglitazone and metformin treatment on liver fat content, hepatic insulin sensitivity, insulin clearance, and gene expression in adipose tissue and serum adiponectin concentrations in type 2 diabetes.
Abstract: Both rosiglitazone and metformin increase hepatic insulin sensitivity, but their mechanism of action has not been compared in humans. The objective of this study was to compare the effects of rosiglitazone and metformin treatment on liver fat content, hepatic insulin sensitivity, insulin clearance, and gene expression in adipose tissue and serum adiponectin concentrations in type 2 diabetes. A total of 20 drug-naive patients with type 2 diabetes (age 48 +/- 3 years, fasting plasma glucose 152 +/- 9 mg/dl, BMI 30.6 +/- 0.8 kg/m2) were treated in a double-blind randomized fashion with either 8 mg rosiglitazone or 2 g metformin for 16 weeks. Both drugs similarly decreased HbA1c, insulin, and free fatty acid concentrations. Body weight decreased in the metformin (84 +/- 4 vs. 82 +/- 4 kg, P < 0.05) but not the rosiglitazone group. Liver fat (proton spectroscopy) was decreased with rosiglitazone by 51% (15 +/- 3 vs. 7 +/- 1%, 0 vs. 16 weeks, P = 0.003) but not by metformin (13 +/- 3 to 14 +/- 3%, NS). Rosiglitazone (16 +/- 2 vs. 20 +/- 1 ml.kg(-1).min(-1), P = 0.02) but not metformin increased insulin clearance by 20%. Hepatic insulin sensitivity in the basal state increased similarly in both groups. Insulin-stimulated glucose uptake increased significantly with rosiglitazone but not with metformin. Serum adiponectin concentrations increased by 123% with rosiglitazone but remained unchanged during metformin treatment. The decrease of serum adiponectin concentrations correlated with the decrease in liver fat (r = -0.74, P < 0.001). Rosiglitazone but not metformin significantly increased expression of peroxisome proliferator-activated receptor-gamma, adiponectin, and lipoprotein lipase in adipose tissue. In conclusion, rosiglitazone but not metformin decreases liver fat and increases insulin clearance. The decrease in liver fat by rosiglitazone is associated with an increase in serum adiponectin concentrations. Both agents increase hepatic insulin sensitivity, but only rosiglitazone increases peripheral glucose uptake.

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: In comparison to the established uncoupling and thermogenic activities of UCP1, UCP2 and UCP3 appear to be involved in the limitation of free radical levels in cells rather than in physiological uncouplings and thermogenesis.
Abstract: Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner membrane of mitochondria. They are found in all mammals and in plants. They belong to the family of anion mitochondrial carriers including adenine nucleotide transporters. The term "uncoupling protein" was originally used for UCP1, which is uniquely present in mitochondria of brown adipocytes, the thermogenic cells that maintain body temperature in small rodents. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP synthase. Activation of UCP1 enhances respiration, and the uncoupling process results in a futile cycle and dissipation of oxidation energy as heat. UCP2 is ubiquitous and highly expressed in the lymphoid system, macrophages, and pancreatic islets. UCP3 is mainly expressed in skeletal muscles. In comparison to the established uncoupling and thermogenic activities of UCP1, UCP2 and UCP3 appear to be involved in the limitation of free radical levels in cells rather than in physiological uncoupling and thermogenesis. Moreover, UCP2 is a regulator of insulin secretion and UCP3 is involved in fatty acid metabolism.

Journal ArticleDOI
01 Apr 2004-Diabetes
TL;DR: Novel protective effects of 11 beta-HSD-1 deficiency on adipose function, distribution, and gene expression in vivo in mice are reported, providing the first in vivo evidence that adipose 11beta- HSD- 1 deficiency beneficially alters adipose tissue distribution and function.
Abstract: The metabolic syndrome (visceral obesity, insulin resistance, type 2 diabetes, and dyslipidemia) resembles Cushing’s Syndrome, but without elevated circulating glucocorticoid levels. An emerging concept suggests that the aberrantly elevated levels of the intracellular glucocorticoid reamplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) found in adipose tissue of obese humans and rodents underlies the phenotypic similarities between idiopathic and “Cushingoid” obesity. Transgenic overexpression of 11β-HSD-1 in adipose tissue reproduces a metabolic syndrome in mice, whereas 11β-HSD-1 deficiency or inhibition has beneficial metabolic effects, at least on liver metabolism. Here we report novel protective effects of 11β-HSD-1 deficiency on adipose function, distribution, and gene expression in vivo in 11β-HSD-1 nullizygous (11β-HSD-1 −/− ) mice. 11β-HSD-1 −/− mice expressed lower resistin and tumor necrosis factor-α, but higher peroxisome proliferator–activated receptor-γ, adiponectin, and uncoupling protein-2 mRNA levels in adipose, indicating insulin sensitization. Isolated 11β-HSD-1 −/− adipocytes exhibited higher basal and insulin-stimulated glucose uptake. 11β-HSD-1 −/− mice also exhibited reduced visceral fat accumulation upon high-fat feeding . High-fat–fed 11β-HSD-1 −/− mice rederived onto the C57BL/6J strain resisted diabetes and weight gain despite consuming more calories. These data provide the first in vivo evidence that adipose 11β-HSD-1 deficiency beneficially alters adipose tissue distribution and function, complementing the reported effects of hepatic 11β-HSD-1 deficiency or inhibition.

Journal ArticleDOI
01 Apr 2004-Diabetes
TL;DR: This is the first study to demonstrate that inflammatory cytokines IL-6 and IL-10 alter hepatic and skeletal muscle insulin action in vivo, and the mechanism may involve cytokine-induced alteration in intracellular fat contents.
Abstract: The circulating level of the inflammatory cytokine interleukin (IL)-6 is elevated in various insulin-resistant states including type 2 diabetes, obesity, cancer, and HIV-associated lipodystrophy. To determine the role of IL-6 in the development of insulin resistance, we examined the effects of IL-6 treatment on whole-body insulin action and glucose metabolism in vivo during hyperinsulinemic-euglycemic clamps in awake mice. Pretreatment of IL-6 blunted insulin's ability to suppress hepatic glucose production and insulin-stimulated insulin receptor substrate (IRS)-2-associated phosphatidylinositol (PI) 3-kinase activity in liver. Acute IL-6 treatment also reduced insulin-stimulated glucose uptake in skeletal muscle, and this was associated with defects in insulin-stimulated IRS-1-associated PI 3-kinase activity and increases in fatty acyl-CoA levels in skeletal muscle. In contrast, we found that co-treatment of IL-10, a predominantly anti-inflammatory cytokine, prevented IL-6-induced defects in hepatic insulin action and signaling activity. Additionally, IL-10 co-treatment protected skeletal muscle from IL-6 and lipid-induced defects in insulin action and signaling activity, and these effects were associated with decreases in intramuscular fatty acyl-CoA levels. This is the first study to demonstrate that inflammatory cytokines IL-6 and IL-10 alter hepatic and skeletal muscle insulin action in vivo, and the mechanism may involve cytokine-induced alteration in intracellular fat contents. These findings implicate an important role of inflammatory cytokines in the pathogenesis of insulin resistance.

Journal ArticleDOI
01 Apr 2004-Diabetes
TL;DR: 24-h exposure of isolated rat soleus muscle to metformin or TZDs reduced cell respiration and increased anaerobic glycolysis, which could contribute to their antidiabetic effects.
Abstract: Metformin and thiazolidinediones (TZDs) are believed to exert their antidiabetic effects via different mechanisms. As evidence suggests that both impair cell respiration in vitro, this study compared their effects on mitochondrial functions. The activity of complex I of the respiratory chain, which is known to be affected by metformin, was measured in tissue homogenates that contained disrupted mitochondria. In homogenates of skeletal muscle, metformin and TZDs reduced the activity of complex I (30 mmol/l metformin, -15 +/- 2%; 100 micromol/l rosiglitazone, -54 +/- 7; and 100 micromol/l pioglitazone, -12 +/- 4; P < 0.05 each). Inhibition of complex I was confirmed by reduced state 3 respiration of isolated mitochondria consuming glutamate + malate as substrates for complex I (30 mmol/l metformin, -77 +/- 1%; 100 micromol/l rosiglitazone, -24 +/- 4; and 100 micromol/l pioglitazone, -18 +/- 5; P < 0.05 each), whereas respiration with succinate feeding into complex II was unaffected. In line with inhibition of complex I, 24-h exposure of isolated rat soleus muscle to metformin or TZDs reduced cell respiration and increased anaerobic glycolysis (glucose oxidation: 270 micromol/l metformin, -30 +/- 9%; 9 micromol/l rosiglitazone, -25 +/- 8; and 9 micromol/l pioglitazone, -45 +/- 3; lactate release: 270 micromol/l metformin, +84 +/- 12; 9 micromol/l rosiglitazone, +38 +/- 6; and 9 micromol/l pioglitazone, +64 +/- 11; P < 0.05 each). As both metformin and TZDs inhibit complex I activity and cell respiration in vitro, similar mitochondrial actions could contribute to their antidiabetic effects.

Journal ArticleDOI
01 Nov 2004-Diabetes
TL;DR: A more general association of the PTPN22 locus with autoimmune disease is indicated, as reported for an association of Trp(620) with another autoimmune disorder, Graves' disease, in 1,734 case and control subjects.
Abstract: In the genetic analysis of common, multifactorial diseases, such as type 1 diabetes, true positive irrefutable linkage and association results have been rare to date. Recently, it has been reported that a single nucleotide polymorphism (SNP), 1858C>T, in the gene PTPN22, encoding Arg620Trp in the lymphoid protein tyrosine phosphatase (LYP), which has been shown to be a negative regulator of T-cell activation, is associated with an increased risk of type 1 diabetes. Here, we have replicated these findings in 1,388 type 1 diabetic families and in a collection of 1,599 case and 1,718 control subjects, confirming the association of the PTPN22 locus with type 1 diabetes (family-based relative risk (RR) 1.67 [95% CI 1.46-1.91], and case-control odds ratio (OR) 1.78 [95% CI 1.54-2.06]; overall P = 6.02 x 10(-27)). We also report evidence for an association of Trp(620) with another autoimmune disorder, Graves' disease, in 1,734 case and control subjects (P = 6.24 x 10(-4); OR 1.43 [95% CI 1.17-1.76]). Taken together, these results indicate a more general association of the PTPN22 locus with autoimmune disease.

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: How antioxidants targeted to mitochondria, or selective mitochondrial uncoupling, may be potential therapies for diabetes are discussed and the background to these strategies is outlined.
Abstract: Hyperglycemia causes many of the pathological consequences of both type 1 and type 2 diabetes. Much of this damage is suggested to be a consequence of elevated production of reactive oxygen species by the mitochondrial respiratory chain during hyperglycemia. Mitochondrial radical production associated with hyperglycemia will also disrupt glucose-stimulated insulin secretion by pancreatic beta-cells, because pancreatic beta-cells are particularly susceptible to oxidative damage. Therefore, mitochondrial radical production in response to hyperglycemia contributes to both the progression and pathological complications of diabetes. Consequently, strategies to decrease mitochondrial radical production and oxidative damage may have therapeutic potential. This could be achieved by the use of antioxidants or by decreasing the mitochondrial membrane potential. Here, we outline the background to these strategies and discuss how antioxidants targeted to mitochondria, or selective mitochondrial uncoupling, may be potential therapies for diabetes.

Journal ArticleDOI
01 May 2004-Diabetes
TL;DR: It is shown that milk, for which fats are 98% triglycerides, immediately inhibited leptin transport as assessed with in vivo, in vitro, and in situ models of the BBB, and suggested that triglyceride-mediated leptin resistance may have evolved as an anti-anorectic mechanism during starvation.
Abstract: Obesity is associated with leptin resistance as evidenced by hyperleptinemia. Resistance arises from impaired leptin transport across the blood-brain barrier (BBB), defects in leptin receptor signaling, and blockades in downstream neuronal circuitries. The mediator of this resistance is unknown. Here, we show that milk, for which fats are 98% triglycerides, immediately inhibited leptin transport as assessed with in vivo, in vitro, and in situ models of the BBB. Fat-free milk and intralipid, a source of vegetable triglycerides, were without effect. Both starvation and diet-induced obesity elevated triglycerides and decreased the transport of leptin across the BBB, whereas short-term fasting decreased triglycerides and increased transport. Three of four triglycerides tested intravenously inhibited transport of leptin across the BBB, but their free fatty acid constituents were without effect. Treatment with gemfibrozil, a drug that specifically reduces triglyceride levels, reversed both hypertriglyceridemia and impaired leptin transport. We conclude that triglycerides are an important cause of leptin resistance as mediated by impaired transport across the BBB and suggest that triglyceride-mediated leptin resistance may have evolved as an anti-anorectic mechanism during starvation. Decreasing triglycerides may potentiate the anorectic effect of leptin by enhancing leptin transport across the BBB.

Journal ArticleDOI
01 Sep 2004-Diabetes
TL;DR: It is demonstrated by RT-PCR on cDNA libraries and human tissue extracts that the ZnT-8 gene is solely transcribed in the pancreas, mainly in the islets of Langerhans, and this gene is a major component for providing zinc to insulin maturation and/or storage processes in insulin-secreting pancreatic beta-cells.
Abstract: SLC30A8, a novel member of the zinc transporter (ZnT) family, was identified by searching the human genomic and expressed sequence tag (EST) databases with the amino acid sequence of all known human ZnT. The protein (369 amino acids) predicted from this gene, ZnT-8, contains six transmembrane domains and a histidine-rich loop between transmembrane domains IV and V, like the other ZnT proteins. We demonstrated by RT-PCR on cDNA libraries and human tissue extracts that the ZnT-8 gene is solely transcribed in the pancreas, mainly in the islets of Langerhans. The gene, named SLC30A8, was cloned and sequenced. Confocal immunofluorescence analysis revealed that a ZnT-8-EGFP (enhanced green fluorescent protein) fusion product colocalized with insulin in the secretory pathway granules of the insulin-secreting INS-1 cells. Exposure of the ZnT-8-EGFP stably expressing HeLa cells to 75 μmol/l zinc caused an accumulation of zinc in intracellular vesicles compared with cells expressing EGFP alone. These results identified ZnT-8 as a ZnT specific to the pancreas and expressed in β-cells. Because ZnT-8 facilitates the accumulation of zinc from the cytoplasm into intracellular vesicles, ZnT-8 may be a major component for providing zinc to insulin maturation and/or storage processes in insulin-secreting pancreatic β-cells.

Journal ArticleDOI
01 Nov 2004-Diabetes
TL;DR: It is shown that mTOR plays a critical role in 3T3-L1 preadipocyte differentiation and that m TOR kinase activity is required for this process, and a model in which the mTOR pathway and the phosphatidylinositol 3-kinase/Akt pathway act in parallel to regulate PPAR-gamma activation during adipogenesis by mediating nutrient availability and insulin signals, respectively is proposed.
Abstract: Adipocyte differentiation is a developmental process that is critical for metabolic homeostasis and nutrient signaling. The mammalian target of rapamycin (mTOR) mediates nutrient signaling to regulate cell growth, proliferation, and diverse cellular differentiation. It has been reported that rapamycin, the inhibitor of mTOR and an immunosuppressant, blocks adipocyte differentiation, but the mechanism underlying this phenomenon remains unknown. Here we show that mTOR plays a critical role in 3T3-L1 preadipocyte differentiation and that mTOR kinase activity is required for this process. Rapamycin specifically disrupted the positive transcriptional feedback loop between CCAAT/enhancer-binding protein-alpha and peroxisome proliferator-activated receptor-gamma (PPAR-gamma), two key transcription factors in adipogenesis, by directly targeting the transactivation activity of PPAR-gamma. In addition, we demonstrate for the first time that PPAR-gamma activity is dependent on amino acid sufficiency, revealing a molecular link between nutrient status and adipogenesis. The results of our further investigation have led us to propose a model in which the mTOR pathway and the phosphatidylinositol 3-kinase/Akt pathway act in parallel to regulate PPAR-gamma activation during adipogenesis by mediating nutrient availability and insulin signals, respectively. It is interesting that troglitazone (a thiazolidinedione drug) reversed the inhibitory effects of rapamycin and amino acid deprivation, implicating therapeutic values of thiazolidinedione drugs to counter certain side effects of rapamycin as an immunosuppressant.

Journal ArticleDOI
01 Jan 2004-Diabetes
TL;DR: C-peptide measurement is the most suitable primary outcome for clinical trials of therapies aimed at preserving or improving endogenous insulin secretion in type 1 diabetes patients, and available data demonstrate that even relatively modest treatment effects on C- peptide will result in clinically meaningful benefits.
Abstract: The underlying cause of type 1 diabetes, loss of β-cell function, has become the therapeutic target for a number of interventions in patients with type 1 diabetes. Even though insulin therapies continue to improve, it remains difficult to achieve normal glycemic control in type 1 diabetes, especially long term. The associated risks of hypoglycemia and end-organ diabetic complications remain. Retention of β-cell function in patients with type 1 diabetes is known to result in improved glycemic control and reduced hypoglycemia, retinopathy, and nephropathy. To facilitate the development of therapies aimed at altering the type 1 diabetes disease process, an American Diabetes Association workshop was convened to identify appropriate efficacy outcome measures in type 1 diabetes clinical trials. The following consensus emerged: While measurements of immune responses to islet cells are important in elucidating pathogenesis, none of these measures have directly correlated with the decline in endogenous insulin secretion. HbA1c is a highly valuable clinical measure of glycemic control, but it is an insensitive measure of β-cell function, particularly with the currently accepted standard of near-normal glycemic control. Rates of severe hypoglycemia and diabetic complications ultimately will be improved by therapies that are effective at preserving β-cell function but as primary outcomes require inordinately large and protracted trials. Endogenous insulin secretion is assessed best by measurement of C-peptide, which is cosecreted with insulin in a one-to-one molar ratio but unlike insulin experiences little first pass clearance by the liver. Measurement of C-peptide under standardized conditions provides a sensitive, well accepted, and clinically validated assessment of β-cell function. C-peptide measurement is the most suitable primary outcome for clinical trials of therapies aimed at preserving or improving endogenous insulin secretion in type 1 diabetes patients. Available data demonstrate that even relatively modest treatment effects on C-peptide will result in clinically meaningful benefits. The development of therapies for addressing this important unmet clinical need will be facilitated by trials that are carefully designed with β-cell function as determined by C-peptide measurement as the primary efficacy outcome.

Journal ArticleDOI
01 May 2004-Diabetes
TL;DR: 1 week's treatment with a single daily dose of the GLP-1 derivative liraglutide, operating through several different mechanisms including an ameliorated pancreatic islet cell function in individuals with type 2 diabetes, improves glycemic control throughout 24 h of daily living, i.e., prandial and nocturnal periods.
Abstract: Glucagon-like peptide 1 (GLP-1) is potentially a very attractive agent for treating type 2 diabetes. We explored the effect of short-term (1 week) treatment with a GLP-1 derivative, liraglutide (NN2211), on 24-h dynamics in glycemia and circulating free fatty acids, islet cell hormone profiles, and gastric emptying during meals using acetaminophen. Furthermore, fasting endogenous glucose release and gluconeogenesis (3-3H-glucose infusion and 2H2O ingestion, respectively) were determined, and aspects of pancreatic islet cell function were elucidated on the subsequent day using homeostasis model assessment and first- and second-phase insulin response during a hyperglycemic clamp (plasma glucose ∼16 mmol/l), and, finally, on top of hyperglycemia, an arginine stimulation test was performed. For accomplishing this, 13 patients with type 2 diabetes were examined in a double-blind, placebo-controlled crossover design. Liraglutide (6 μg/kg) was administered subcutaneously once daily. Liraglutide significantly reduced the 24-h area under the curve for glucose ( P = 0.01) and glucagon ( P = 0.04), whereas the area under the curve for circulating free fatty acids was unaltered. Twenty-four-hour insulin secretion rates as assessed by deconvolution of serum C-peptide concentrations were unchanged, indicating a relative increase. Gastric emptying was not influenced at the dose of liraglutide used. Fasting endogenous glucose release was decreased ( P = 0.04) as a result of a reduced glycogenolysis ( P = 0.01), whereas gluconeogenesis was unaltered. First-phase insulin response and the insulin response to an arginine stimulation test with the presence of hyperglycemia were markedly increased ( P < 0.001), whereas the proinsulin/insulin ratio fell ( P = 0.001). The disposition index (peak insulin concentration after intravenous bolus of glucose multiplied by insulin sensitivity as assessed by homeostasis model assessment) almost doubled during liraglutide treatment ( P < 0.01). Both during hyperglycemia per se and after arginine exposure, the glucagon responses were reduced during liraglutide administration ( P < 0.01 and P = 0.01). Thus, 1 week’s treatment with a single daily dose of the GLP-1 derivative liraglutide, operating through several different mechanisms including an ameliorated pancreatic islet cell function in individuals with type 2 diabetes, improves glycemic control throughout 24 h of daily living, i.e., prandial and nocturnal periods. This study further emphasizes GLP-1 and its derivatives as a promising novel concept for treatment of type 2 diabetes.

Journal ArticleDOI
01 Sep 2004-Diabetes
TL;DR: The data indicate that although the hearts of glucose-intolerant ob/ob mice are capable of maintaining their function under conditions of increased fatty acid supply and hyperinsulinemia, they are insulin-resistant, metabolically inefficient, and unable to modulate substrate utilization in response to changes in insulin and fatty acids supply.
Abstract: Diabetes alters cardiac substrate metabolism. The cardiac phenotype in insulin-resistant states has not been comprehensively characterized. The goal of these studies was to determine whether the hearts of leptin-deficient 8-week-old ob/ob mice were able to modulate cardiac substrate utilization in response to insulin or to changes in fatty acid delivery. Ob/ob mice were insulin resistant and glucose intolerant. Insulin signal transduction and insulin-stimulated glucose uptake were markedly impaired in ob/ob cardiomyocytes. Insulin-stimulated rates of glycolysis and glucose oxidation were 1.5- and 1.8-fold higher in wild-type hearts, respectively, versus ob/ob , and glucose metabolism in ob/ob hearts was unresponsive to insulin. Increasing concentrations of palmitate from 0.4 mmol/l (low) to 1.2 mmol/l (high) led to a decline in glucose oxidation in wild-type hearts, whereas glucose oxidation remained depressed and did not change in ob/ob mouse hearts. In contrast, fatty acid utilization in ob/ob hearts was 1.5- to 2-fold greater in the absence or presence of 1 nmol/l insulin and rose with increasing palmitate concentrations. Moreover, the ability of insulin to reduce palmitate oxidation rates was blunted in the hearts of ob/ob mice. Under low-palmitate and insulin-free conditions, cardiac performance was significantly greater in wild-type hearts. However, in the presence of high palmitate and 1 nmol/l insulin, cardiac performance in ob/ob mouse hearts was relatively preserved, whereas function in wild-type mouse hearts declined substantially. Under all perfusion conditions, myocardial oxygen consumption was higher in ob/ob hearts, ranging from 30% higher in low-palmitate conditions to greater than twofold higher under high-palmitate conditions. These data indicate that although the hearts of glucose-intolerant ob/ob mice are capable of maintaining their function under conditions of increased fatty acid supply and hyperinsulinemia, they are insulin-resistant, metabolically inefficient, and unable to modulate substrate utilization in response to changes in insulin and fatty acid supply.

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: Some of the key features of mitochondrial biology are reviewed and the pathways of mitochondrial calcium accumulation are focused on, including two models of oxidative stress in cardiomyocytes and calcium overload in neurons.
Abstract: Mitochondria play a central role in cell life and cell death. An increasing number of studies place mitochondrial dysfunction at the heart of disease, most notably in the heart and the central nervous system. In this article, I review some of the key features of mitochondrial biology and focus on the pathways of mitochondrial calcium accumulation. Substantial evidence now suggests that the accumulation of calcium into mitochondria may play a key role as a trigger to mitochondrial pathology, especially when that calcium uptake is accompanied by another stressor, in particular nitrosative or oxidative stress. The major process involved is the opening of the mitochondrial permeability transition pore, a large conductance pore that causes a collapse of the mitochondrial membrane potential, leading to ATP depletion and necrotic cell death or to cytochrome c release and apoptosis, depending on the rate of ATP consumption. I discuss two models in particular in which these processes have been characterized. The first is a model of oxidative stress in cardiomyocytes, in which reperfusion after ischemia causes mitochondrial calcium overload, and oxidative stress. Recent experiments suggest that cardioprotection by hypoxic preconditioning or exposure to the ATP-dependent K(+) channel opener diazoxide increases mitochondrial resistance to oxidative injury. In a second model, of calcium overload in neurons, the neurotoxicity of glutamate depends on mitochondrial calcium uptake, but the toxicity to mitochondria also requires the generation of nitric oxide. Glutamate toxicity after activation of N-methyl-D-aspartate (NMDA) receptors results from the colocalization of NMDA receptors with neuronal nitric oxide synthase (nNOS). The calcium increase mediated by NMDA receptor activation is thus associated with nitric oxide generation, and the combination leads to the collapse of mitochondrial membrane potential followed by cell death.

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: Clinical characteristics of mitochondrial diabetes are described and the origin of the age-dependent deterioration of pancreatic function in carriers of the A3243G mutation and the contribution of ATP and other mitochondrion-derived factors such as reactive oxygen species to the development of diabetes is discussed.
Abstract: Mutations in mitochondrial DNA (mtDNA) associate with various disease states. A few mtDNA mutations strongly associate with diabetes, with the most common mutation being the A3243G mutation in the mitochondrial DNA-encoded tRNA(Leu,UUR) gene. This article describes clinical characteristics of mitochondrial diabetes and its molecular diagnosis. Furthermore, it outlines recent developments in the pathophysiological and molecular mechanisms leading to a diabetic state. A gradual development of pancreatic beta-cell dysfunction upon aging, rather than insulin resistance, is the main mechanism in developing glucose intolerance. Carriers of the A3243G mutation show during a hyperglycemic clamp at 10 mmol/l glucose a marked reduction in first- and second-phase insulin secretion compared with noncarriers. The molecular mechanism by which the A3243G mutation affects insulin secretion may involve an attenuation of cytosolic ADP/ATP levels leading to a resetting of the glucose sensor in the pancreatic beta-cell, such as in maturity-onset diabetes of the young (MODY)-2 patients with mutations in glucokinase. Unlike in MODY2, which is a nonprogressive form of diabetes, mitochondrial diabetes does show a pronounced age-dependent deterioration of pancreatic function indicating involvement of additional processes. Furthermore, one would expect that all mtDNA mutations that affect ATP synthesis lead to diabetes. This is in contrast to clinical observations. The origin of the age-dependent deterioration of pancreatic function in carriers of the A3243G mutation and the contribution of ATP and other mitochondrion-derived factors such as reactive oxygen species to the development of diabetes is discussed.

Journal ArticleDOI
01 Sep 2004-Diabetes
TL;DR: Findings illustrate that peripheral administration of a larger peptide-albumin recombinant protein mimics GLP-1R-dependent activation of central and peripheral pathways regulating energy intake and glucose homeostasis in vivo.
Abstract: Peptide hormones exert unique actions via specific G protein-coupled receptors; however, the therapeutic potential of regulatory peptides is frequently compromised by rapid enzymatic inactivation and clearance from the circulation. In contrast, recombinant or covalent coupling of smaller peptides to serum albumin represents an emerging strategy for extending the circulating t(1/2) of the target peptide. However, whether larger peptide-albumin derivatives will exhibit the full spectrum of biological activities encompassed by the native peptide remains to be demonstrated. We report that Albugon, a human glucagon-like peptide (GLP)-1-albumin recombinant protein, activates GLP-1 receptor (GLP-1R)-dependent cAMP formation in BHK-GLP-1R cells, albeit with a reduced half-maximal concentration (EC(50)) (0.2 vs. 20 nmol/l) relative to the GLP-1R agonist exendin-4. Albugon decreased glycemic excursion and stimulated insulin secretion in wild-type but not GLP-1R(-/-) mice and reduced food intake after both intracerebroventricular and intraperitoneal administration. Moreover, intraperitoneal injection of Albugon inhibited gastric emptying and activated c-FOS expression in the area postrema, the nucleus of the solitary tract, the central nucleus of the amygdala, the parabrachial, and the paraventricular nuclei. These findings illustrate that peripheral administration of a larger peptide-albumin recombinant protein mimics GLP-1R-dependent activation of central and peripheral pathways regulating energy intake and glucose homeostasis in vivo.