scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cheminformatics in 2021"


Journal ArticleDOI
TL;DR: The COLLLECtion of Open Natural prodUcTs (COCONUT) as mentioned in this paper is an aggregated dataset of elucidated and predicted natural products collected from open sources and a web interface to browse, search and easily and quickly download NPs.
Abstract: Natural products (NPs) are small molecules produced by living organisms with potential applications in pharmacology and other industries as many of them are bioactive. This potential raised great interest in NP research around the world and in different application fields, therefore, over the years a multiplication of generalistic and thematic NP databases has been observed. However, there is, at this moment, no online resource regrouping all known NPs in just one place, which would greatly simplify NPs research and allow computational screening and other in silico applications. In this manuscript we present the online version of the COlleCtion of Open Natural prodUcTs (COCONUT): an aggregated dataset of elucidated and predicted NPs collected from open sources and a web interface to browse, search and easily and quickly download NPs. COCONUT web is freely available at https://coconut.naturalproducts.net .

152 citations


Journal ArticleDOI
TL;DR: In this paper, the predictive capacity and computational efficiency of the prediction models developed by eight machine learning (ML) algorithms, including four descriptor-based models (SVM, XGBoost, RF and DNN) and four graph-based methods (GCN, GAT, MPNN and Attentive FP), were extensively tested and compared.
Abstract: Graph neural networks (GNN) has been considered as an attractive modelling method for molecular property prediction, and numerous studies have shown that GNN could yield more promising results than traditional descriptor-based methods. In this study, based on 11 public datasets covering various property endpoints, the predictive capacity and computational efficiency of the prediction models developed by eight machine learning (ML) algorithms, including four descriptor-based models (SVM, XGBoost, RF and DNN) and four graph-based models (GCN, GAT, MPNN and Attentive FP), were extensively tested and compared. The results demonstrate that on average the descriptor-based models outperform the graph-based models in terms of prediction accuracy and computational efficiency. SVM generally achieves the best predictions for the regression tasks. Both RF and XGBoost can achieve reliable predictions for the classification tasks, and some of the graph-based models, such as Attentive FP and GCN, can yield outstanding performance for a fraction of larger or multi-task datasets. In terms of computational cost, XGBoost and RF are the two most efficient algorithms and only need a few seconds to train a model even for a large dataset. The model interpretations by the SHAP method can effectively explore the established domain knowledge for the descriptor-based models. Finally, we explored use of these models for virtual screening (VS) towards HIV and demonstrated that different ML algorithms offer diverse VS profiles. All in all, we believe that the off-the-shelf descriptor-based models still can be directly employed to accurately predict various chemical endpoints with excellent computability and interpretability.

147 citations


Journal ArticleDOI
TL;DR: Gnina as discussed by the authors uses an ensemble of convolutional neural networks (CNNs) as a scoring function to determine the fitness of sampled poses for molecular docking computationally predicting the conformation of a small molecule when binding to a receptor.
Abstract: Molecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2A root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. Gnina, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of Gnina under an open source license for use as a molecular docking tool at https://github.com/gnina/gnina .

99 citations


Journal ArticleDOI
TL;DR: PatRoon as discussed by the authors is a new R based open-source software platform, which provides comprehensive, fully tailored and straightforward non-target analysis workflows, making the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) software tools under a consistent interface.
Abstract: Mass spectrometry based non-target analysis is increasingly adopted in environmental sciences to screen and identify numerous chemicals simultaneously in highly complex samples. However, current data processing software either lack functionality for environmental sciences, solve only part of the workflow, are not openly available and/or are restricted in input data formats. In this paper we present patRoon, a new R based open-source software platform, which provides comprehensive, fully tailored and straightforward non-target analysis workflows. This platform makes the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) software tools under a consistent interface. In addition, patRoon offers various functionality and strategies to simplify and perform automated processing of complex (environmental) data effectively. patRoon implements several effective optimization strategies to significantly reduce computational times. The ability of patRoon to perform time-efficient and automated non-target data annotation of environmental samples is demonstrated with a simple and reproducible workflow using open-access data of spiked samples from a drinking water treatment plant study. In addition, the ability to easily use, combine and evaluate different algorithms was demonstrated for three commonly used feature finding algorithms. This article, combined with already published works, demonstrate that patRoon helps make comprehensive (environmental) non-target analysis readily accessible to a wider community of researchers.

71 citations


Journal ArticleDOI
TL;DR: In this article, a subset of the PubChem database relevant for exposomics, PubChemLite, is presented as a database resource that can be (and has been) integrated into current workflows for high resolution mass spectrometry.
Abstract: Compound (or chemical) databases are an invaluable resource for many scientific disciplines. Exposomics researchers need to find and identify relevant chemicals that cover the entirety of potential (chemical and other) exposures over entire lifetimes. This daunting task, with over 100 million chemicals in the largest chemical databases, coupled with broadly acknowledged knowledge gaps in these resources, leaves researchers faced with too much—yet not enough—information at the same time to perform comprehensive exposomics research. Furthermore, the improvements in analytical technologies and computational mass spectrometry workflows coupled with the rapid growth in databases and increasing demand for high throughput “big data” services from the research community present significant challenges for both data hosts and workflow developers. This article explores how to reduce candidate search spaces in non-target small molecule identification workflows, while increasing content usability in the context of environmental and exposomics analyses, so as to profit from the increasing size and information content of large compound databases, while increasing efficiency at the same time. In this article, these methods are explored using PubChem, the NORMAN Network Suspect List Exchange and the in silico fragmentation approach MetFrag. A subset of the PubChem database relevant for exposomics, PubChemLite, is presented as a database resource that can be (and has been) integrated into current workflows for high resolution mass spectrometry. Benchmarking datasets from earlier publications are used to show how experimental knowledge and existing datasets can be used to detect and fill gaps in compound databases to progressively improve large resources such as PubChem, and topic-specific subsets such as PubChemLite. PubChemLite is a living collection, updating as annotation content in PubChem is updated, and exported to allow direct integration into existing workflows such as MetFrag. The source code and files necessary to recreate or adjust this are jointly hosted between the research parties (see data availability statement). This effort shows that enhancing the FAIRness (Findability, Accessibility, Interoperability and Reusability) of open resources can mutually enhance several resources for whole community benefit. The authors explicitly welcome additional community input on ideas for future developments.

42 citations


Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors presented a deep learning model called PUResNet and a novel data cleaning process based on structural similarity for predicting protein-ligand binding sites, which achieved better performance than the existing methods while evaluating two independent sets using distance, volume and proportion metrics.
Abstract: BACKGROUND Predicting protein-ligand binding sites is a fundamental step in understanding the functional characteristics of proteins, which plays a vital role in elucidating different biological functions and is a crucial step in drug discovery. A protein exhibits its true nature after binding to its interacting molecule known as a ligand that binds only in the favorable binding site of the protein structure. Different computational methods exploiting the features of proteins have been developed to identify the binding sites in the protein structure, but none seems to provide promising results, and therefore, further investigation is required. RESULTS In this study, we present a deep learning model PUResNet and a novel data cleaning process based on structural similarity for predicting protein-ligand binding sites. From the whole scPDB (an annotated database of druggable binding sites extracted from the Protein DataBank) database, 5020 protein structures were selected to address this problem, which were used to train PUResNet. With this, we achieved better and justifiable performance than the existing methods while evaluating two independent sets using distance, volume and proportion metrics.

36 citations


Journal ArticleDOI
TL;DR: ProLIF as discussed by the authors is a Python library designed to generate interaction fingerprints for molecular complexes extracted from molecular dynamics trajectories, experimental structures, and docking simulations, which can handle complexes formed of any combination of ligand, protein, DNA, or RNA molecules.
Abstract: Interaction fingerprints are vector representations that summarize the three-dimensional nature of interactions in molecular complexes, typically formed between a protein and a ligand. This kind of encoding has found many applications in drug-discovery projects, from structure-based virtual-screening to machine-learning. Here, we present ProLIF, a Python library designed to generate interaction fingerprints for molecular complexes extracted from molecular dynamics trajectories, experimental structures, and docking simulations. It can handle complexes formed of any combination of ligand, protein, DNA, or RNA molecules. The available interaction types can be fully reparametrized or extended by user-defined ones. Several tutorials that cover typical use-case scenarios are available, and the documentation is accompanied with code snippets showcasing the integration with other data-analysis libraries for a more seamless user-experience. The library can be freely installed from our GitHub repository ( https://github.com/chemosim-lab/ProLIF ).

36 citations


Journal ArticleDOI
TL;DR: This work seeks to capture the chemist’s intuition from matched molecular pairs using machine translation models and shows that the Transformer can generate more molecules with desirable properties by making small modifications to the given starting molecules, which can be intuitive to chemists.
Abstract: A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here, we focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards desirable properties. This task can be framed as a machine translation problem in natural language processing, where in our case, a molecule is translated into a molecule with optimized properties based on the SMILES representation. Typically, chemists would use their intuition to suggest chemical transformations for the starting molecule being optimized. A widely used strategy is the concept of matched molecular pairs where two molecules differ by a single transformation. We seek to capture the chemist’s intuition from matched molecular pairs using machine translation models. Specifically, the sequence-to-sequence model with attention mechanism, and the Transformer model are employed to generate molecules with desirable properties. As a proof of concept, three ADMET properties are optimized simultaneously: logD, solubility, and clearance, which are important properties of a drug. Since desirable properties often vary from project to project, the user-specified desirable property changes are incorporated into the input as an additional condition together with the starting molecules being optimized. Thus, the models can be guided to generate molecules satisfying the desirable properties. Additionally, we compare the two machine translation models based on the SMILES representation, with a graph-to-graph translation model HierG2G, which has shown the state-of-the-art performance in molecular optimization. Our results show that the Transformer can generate more molecules with desirable properties by making small modifications to the given starting molecules, which can be intuitive to chemists. A further enrichment of diverse molecules can be achieved by using an ensemble of models.

34 citations


Journal ArticleDOI
TL;DR: MS2Deepscore as mentioned in this paper uses a Siamese neural network to predict the structural similarity between two chemical structures solely based on their MS/MS fragmentation spectra using a cleaned dataset of >100,000 mass spectra of about 15,000 unique known compounds.
Abstract: Mass spectrometry data is one of the key sources of information in many workflows in medicine and across the life sciences. Mass fragmentation spectra are generally considered to be characteristic signatures of the chemical compound they originate from, yet the chemical structure itself usually cannot be easily deduced from the spectrum. Often, spectral similarity measures are used as a proxy for structural similarity but this approach is strongly limited by a generally poor correlation between both metrics. Here, we propose MS2DeepScore: a novel Siamese neural network to predict the structural similarity between two chemical structures solely based on their MS/MS fragmentation spectra. Using a cleaned dataset of > 100,000 mass spectra of about 15,000 unique known compounds, we trained MS2DeepScore to predict structural similarity scores for spectrum pairs with high accuracy. In addition, sampling different model varieties through Monte-Carlo Dropout is used to further improve the predictions and assess the model’s prediction uncertainty. On 3600 spectra of 500 unseen compounds, MS2DeepScore is able to identify highly-reliable structural matches and to predict Tanimoto scores for pairs of molecules based on their fragment spectra with a root mean squared error of about 0.15. Furthermore, the prediction uncertainty estimate can be used to select a subset of predictions with a root mean squared error of about 0.1. Furthermore, we demonstrate that MS2DeepScore outperforms classical spectral similarity measures in retrieving chemically related compound pairs from large mass spectral datasets, thereby illustrating its potential for spectral library matching. Finally, MS2DeepScore can also be used to create chemically meaningful mass spectral embeddings that could be used to cluster large numbers of spectra. Added to the recently introduced unsupervised Spec2Vec metric, we believe that machine learning-supported mass spectral similarity measures have great potential for a range of metabolomics data processing pipelines.

33 citations


Journal ArticleDOI
TL;DR: The results reveal that the model can effectively modify the biological affinity of the newly generated molecules towards the craved direction and it was possible to find auspicious sets of unique and diverse molecules, which was the main purpose of the Newly implemented strategy.
Abstract: In this work, we explore the potential of deep learning to streamline the process of identifying new potential drugs through the computational generation of molecules with interesting biological properties. Two deep neural networks compose our targeted generation framework: the Generator, which is trained to learn the building rules of valid molecules employing SMILES strings notation, and the Predictor which evaluates the newly generated compounds by predicting their affinity for the desired target. Then, the Generator is optimized through Reinforcement Learning to produce molecules with bespoken properties. The innovation of this approach is the exploratory strategy applied during the reinforcement training process that seeks to add novelty to the generated compounds. This training strategy employs two Generators interchangeably to sample new SMILES: the initially trained model that will remain fixed and a copy of the previous one that will be updated during the training to uncover the most promising molecules. The evolution of the reward assigned by the Predictor determines how often each one is employed to select the next token of the molecule. This strategy establishes a compromise between the need to acquire more information about the chemical space and the need to sample new molecules, with the experience gained so far. To demonstrate the effectiveness of the method, the Generator is trained to design molecules with an optimized coefficient of partition and also high inhibitory power against the Adenosine $$A_{2A}$$ and $$\kappa$$ opioid receptors. The results reveal that the model can effectively adjust the newly generated molecules towards the wanted direction. More importantly, it was possible to find promising sets of unique and diverse molecules, which was the main purpose of the newly implemented strategy.

31 citations


Journal ArticleDOI
TL;DR: This work demonstrates the advantage of using molecular docking to guide de novo molecule generation over ligand-based predictors with respect to predicted affinity, novelty, and the ability to identify key interactions between ligand and protein target.
Abstract: Deep generative models have shown the ability to devise both valid and novel chemistry, which could significantly accelerate the identification of bioactive compounds. Many current models, however, use molecular descriptors or ligand-based predictive methods to guide molecule generation towards a desirable property space. This restricts their application to relatively data-rich targets, neglecting those where little data is available to sufficiently train a predictor. Moreover, ligand-based approaches often bias molecule generation towards previously established chemical space, thereby limiting their ability to identify truly novel chemotypes. In this work, we assess the ability of using molecular docking via Glide—a structure-based approach—as a scoring function to guide the deep generative model REINVENT and compare model performance and behaviour to a ligand-based scoring function. Additionally, we modify the previously published MOSES benchmarking dataset to remove any induced bias towards non-protonatable groups. We also propose a new metric to measure dataset diversity, which is less confounded by the distribution of heavy atom count than the commonly used internal diversity metric. With respect to the main findings, we found that when optimizing the docking score against DRD2, the model improves predicted ligand affinity beyond that of known DRD2 active molecules. In addition, generated molecules occupy complementary chemical and physicochemical space compared to the ligand-based approach, and novel physicochemical space compared to known DRD2 active molecules. Furthermore, the structure-based approach learns to generate molecules that satisfy crucial residue interactions, which is information only available when taking protein structure into account. Overall, this work demonstrates the advantage of using molecular docking to guide de novo molecule generation over ligand-based predictors with respect to predicted affinity, novelty, and the ability to identify key interactions between ligand and protein target. Practically, this approach has applications in early hit generation campaigns to enrich a virtual library towards a particular target, and also in novelty-focused projects, where de novo molecule generation either has no prior ligand knowledge available or should not be biased by it.

Journal ArticleDOI
TL;DR: GraphSol as discussed by the authors predicts protein solubility by attentive graph convolutional network (GCN), where the protein topology attribute graph was constructed through predicted contact maps only from the sequence.
Abstract: Protein solubility is significant in producing new soluble proteins that can reduce the cost of biocatalysts or therapeutic agents. Therefore, a computational model is highly desired to accurately predict protein solubility from the amino acid sequence. Many methods have been developed, but they are mostly based on the one-dimensional embedding of amino acids that is limited to catch spatially structural information. In this study, we have developed a new structure-aware method GraphSol to predict protein solubility by attentive graph convolutional network (GCN), where the protein topology attribute graph was constructed through predicted contact maps only from the sequence. GraphSol was shown to substantially outperform other sequence-based methods. The model was proven to be stable by consistent $${\text{R}}^{2}$$ of 0.48 in both the cross-validation and independent test of the eSOL dataset. To our best knowledge, this is the first study to utilize the GCN for sequence-based protein solubility predictions. More importantly, this architecture could be easily extended to other protein prediction tasks requiring a raw protein sequence.

Journal ArticleDOI
TL;DR: The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity.
Abstract: Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods.

Journal ArticleDOI
TL;DR: The new DECIMER model is presented, a transformer-based network, which can predict SMILES with above 96% accuracy from depictions of chemical structures without stereochemical information and above 89% accuracy for depictions with stereochemical Information.
Abstract: The amount of data available on chemical structures and their properties has increased steadily over the past decades. In particular, articles published before the mid-1990 are available only in printed or scanned form. The extraction and storage of data from those articles in a publicly accessible database are desirable, but doing this manually is a slow and error-prone process. In order to extract chemical structure depictions and convert them into a computer-readable format, Optical Chemical Structure Recognition (OCSR) tools were developed where the best performing OCSR tools are mostly rule-based. The DECIMER (Deep lEarning for Chemical ImagE Recognition) project was launched to address the OCSR problem with the latest computational intelligence methods to provide an automated open-source software solution. Various current deep learning approaches were explored to seek a best-fitting solution to the problem. In a preliminary communication, we outlined the prospect of being able to predict SMILES encodings of chemical structure depictions with about 90% accuracy using a dataset of 50-100 million molecules. In this article, the new DECIMER model is presented, a transformer-based network, which can predict SMILES with above 96% accuracy from depictions of chemical structures without stereochemical information and above 89% accuracy for depictions with stereochemical information.

Journal ArticleDOI
TL;DR: This work developed several benchmark data sets with end-points determined by pre-defined patterns for evaluation of the ability of interpretation approaches to retrieve patterns in QSAR models, and proposed several quantitative metrics of interpretation performance.
Abstract: Interpretation of QSAR models is useful to understand the complex nature of biological or physicochemical processes, guide structural optimization or perform knowledge-based validation of QSAR models. Highly predictive models are usually complex and their interpretation is non-trivial. This is particularly true for modern neural networks. Various approaches to interpretation of these models exist. However, it is difficult to evaluate and compare performance and applicability of these ever-emerging methods. Herein, we developed several benchmark data sets with end-points determined by pre-defined patterns. These data sets are purposed for evaluation of the ability of interpretation approaches to retrieve these patterns. They represent tasks with different complexity levels: from simple atom-based additive properties to pharmacophore hypothesis. We proposed several quantitative metrics of interpretation performance. Applicability of benchmarks and metrics was demonstrated on a set of conventional models and end-to-end graph convolutional neural networks, interpreted by the previously suggested universal ML-agnostic approach for structural interpretation. We anticipate these benchmarks to be useful in evaluation of new interpretation approaches and investigation of decision making of complex “black box” models.

Posted ContentDOI
TL;DR: Generation of compounds with a diverse predicted selectivity profile toward multiple targets, offering the potential of high efficacy and lower toxicity.
Abstract: In polypharmacology drugs are required to bind to multiple specific targets, for example to enhance efficacy or to reduce resistance formation. Although deep learning has achieved a breakthrough in de novo design in drug discovery, most of its applications only focus on a single drug target to generate drug-like active molecules. However, in reality drug molecules often interact with more than one target which can have desired (polypharmacology) or undesired (toxicity) effects. In a previous study we proposed a new method named DrugEx that integrates an exploration strategy into RNN-based reinforcement learning to improve the diversity of the generated molecules. Here, we extended our DrugEx algorithm with multi-objective optimization to generate drug-like molecules towards multiple targets or one specific target while avoiding off-targets (the two adenosine receptors, A1AR and A2AAR, and the potassium ion channel hERG in this study). In our model, we applied an RNN as the agent and machine learning predictors as the environment. Both the agent and the environment were pre-trained in advance and then interplayed under a reinforcement learning framework. The concept of evolutionary algorithms was merged into our method such that crossover and mutation operations were implemented by the same deep learning model as the agent. During the training loop, the agent generates a batch of SMILES-based molecules. Subsequently scores for all objectives provided by the environment are used to construct Pareto ranks of the generated molecules. For this ranking a non-dominated sorting algorithm and a Tanimoto-based crowding distance algorithm using chemical fingerprints are applied. Here, we adopted GPU acceleration to speed up the process of Pareto optimization. The final reward of each molecule is calculated based on the Pareto ranking with the ranking selection algorithm. The agent is trained under the guidance of the reward to make sure it can generate desired molecules after convergence of the training process. All in all we demonstrate generation of compounds with a diverse predicted selectivity profile towards multiple targets, offering the potential of high efficacy and low toxicity.

Journal ArticleDOI
TL;DR: In this article, the authors present an approach to training GANs that promotes incremental exploration and limits the impacts of mode collapse using concepts from Genetic Algorithms, and they consider both random and guided selection along with recombination during replacement.
Abstract: The process of drug discovery involves a search over the space of all possible chemical compounds. Generative Adversarial Networks (GANs) provide a valuable tool towards exploring chemical space and optimizing known compounds for a desired functionality. Standard approaches to training GANs, however, can result in mode collapse, in which the generator primarily produces samples closely related to a small subset of the training data. In contrast, the search for novel compounds necessitates exploration beyond the original data. Here, we present an approach to training GANs that promotes incremental exploration and limits the impacts of mode collapse using concepts from Genetic Algorithms. In our approach, valid samples from the generator are used to replace samples from the training data. We consider both random and guided selection along with recombination during replacement. By tracking the number of novel compounds produced during training, we show that updates to the training data drastically outperform the traditional approach, increasing potential applications for GANs in drug discovery.

Journal ArticleDOI
TL;DR: It is found that classical learning approaches such as logistic regression perform well with sets of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping classes but needs more examples per class to learn from, and is not able to make a class prediction for every molecule.
Abstract: Chemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to organisation, analysis and interpretation. Chemical ontologies provide structured classifications of chemical entities that can be used for navigation and filtering of the large chemical space. ChEBI is a prominent example of a chemical ontology, widely used in life science contexts. However, ChEBI is manually maintained and as such cannot easily scale to the full scope of public chemical data. There is a need for tools that are able to automatically classify chemical data into chemical ontologies, which can be framed as a hierarchical multi-class classification problem. In this paper we evaluate machine learning approaches for this task, comparing different learning frameworks including logistic regression, decision trees and long short-term memory artificial neural networks, and different encoding approaches for the chemical structures, including cheminformatics fingerprints and character-based encoding from chemical line notation representations. We find that classical learning approaches such as logistic regression perform well with sets of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping classes but needs more examples per class to learn from, and is not able to make a class prediction for every molecule. Future work will explore hybrid and ensemble approaches, as well as alternative network architectures including neuro-symbolic approaches.

Journal ArticleDOI
TL;DR: The developed QSAR-Co-X, an open source pythonbased toolkit for supporting mt-QSAR modelling following the Box-Jenkins moving average approach, embodies several functionalities for dataset selection and curation plus computation of descriptors, for setting up linear and non-linear models, as well as for a comprehensive results analysis.
Abstract: Quantitative structure activity relationships (QSAR) modelling is a well-known computational tool, often used in a wide variety of applications. Yet one of the major drawbacks of conventional QSAR modelling is that models are set up based on a limited number of experimental and/or theoretical conditions. To overcome this, the so-called multitasking or multitarget QSAR (mt-QSAR) approaches have emerged as new computational tools able to integrate diverse chemical and biological data into a single model equation, thus extending and improving the reliability of this type of modelling. We have developed QSAR-Co-X, an open source python–based toolkit (available to download at https://github.com/ncordeirfcup/QSAR-Co-X ) for supporting mt-QSAR modelling following the Box-Jenkins moving average approach. The new toolkit embodies several functionalities for dataset selection and curation plus computation of descriptors, for setting up linear and non-linear models, as well as for a comprehensive results analysis. The workflow within this toolkit is guided by a cohort of multiple statistical parameters and graphical outputs onwards assessing both the predictivity and the robustness of the derived mt-QSAR models. To monitor and demonstrate the functionalities of the designed toolkit, four case-studies pertaining to previously reported datasets are examined here. We believe that this new toolkit, along with our previously launched QSAR-Co code, will significantly contribute to make mt-QSAR modelling widely and routinely applicable.

Journal ArticleDOI
TL;DR: In this article, the authors present a methodology for the evaluation and analysis of structural features influencing metabolic stability, which can assist in the design of new ligands with improved metabolic stability and in the detection of privileged and unfavourable chemical moieties during stability optimization.
Abstract: Computational methods support nowadays each stage of drug design campaigns. They assist not only in the process of identification of new active compounds towards particular biological target, but also help in the evaluation and optimization of their physicochemical and pharmacokinetic properties. Such features are not less important in terms of the possible turn of a compound into a future drug than its desired affinity profile towards considered proteins. In the study, we focus on metabolic stability, which determines the time that the compound can act in the organism and play its role as a drug. Due to great complexity of xenobiotic transformation pathways in the living organisms, evaluation and optimization of metabolic stability remains a big challenge. Here, we present a novel methodology for the evaluation and analysis of structural features influencing metabolic stability. To this end, we use a well-established explainability method called SHAP. We built several predictive models and analyse their predictions with the SHAP values to reveal how particular compound substructures influence the model’s prediction. The method can be widely applied by users thanks to the web service, which accompanies the article. It allows a detailed analysis of SHAP values obtained for compounds from the ChEMBL database, as well as their determination and analysis for any compound submitted by a user. Moreover, the service enables manual analysis of the possible structural modifications via the provision of analogous analysis for the most similar compound from the ChEMBL dataset. To our knowledge, this is the first attempt to employ SHAP to reveal which substructural features are utilized by machine learning models when evaluating compound metabolic stability. The accompanying web service for metabolic stability evaluation can be of great help for medicinal chemists. Its significant usefulness is related not only to the possibility of assessing compound stability, but also to the provision of information about substructures influencing this parameter. It can assist in the design of new ligands with improved metabolic stability, helping in the detection of privileged and unfavourable chemical moieties during stability optimization. The tool is available at https://metstab-shap.matinf.uj.edu.pl/ .

Journal ArticleDOI
TL;DR: DTi2Vec as discussed by the authors constructs the heterogeneous network, and then it automatically generates features for each drug and target using the nodes embedding technique, which showed a statistically significant increase in the prediction performances in terms of AUPR.
Abstract: Drug-target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive research niche, with one of its main focuses being improving the prediction accuracy. Using machine learning (ML) models for this task, specifically network-based approaches, is effective and has shown great advantages over the other computational methods. However, ML model development involves upstream hand-crafted feature extraction and other processes that impact prediction accuracy. Thus, network-based representation learning techniques that provide automated feature extraction combined with traditional ML classifiers dealing with downstream link prediction tasks may be better-suited paradigms. Here, we present such a method, DTi2Vec, which identifies DTIs using network representation learning and ensemble learning techniques. DTi2Vec constructs the heterogeneous network, and then it automatically generates features for each drug and target using the nodes embedding technique. DTi2Vec demonstrated its ability in drug-target link prediction compared to several state-of-the-art network-based methods, using four benchmark datasets and large-scale data compiled from DrugBank. DTi2Vec showed a statistically significant increase in the prediction performances in terms of AUPR. We verified the "novel" predicted DTIs using several databases and scientific literature. DTi2Vec is a simple yet effective method that provides high DTI prediction performance while being scalable and efficient in computation, translating into a powerful drug repositioning tool.

Journal ArticleDOI
TL;DR: The software for the IUPAC Chemical Identifier, InChI, is extraordinarily reliable, and the details of the improvements in the v.1.06 release introduces significant new features, including support for pseudo-element atoms and an improved description of polymers.
Abstract: The software for the IUPAC Chemical Identifier, InChI, is extraordinarily reliable. It has been tested on large databases around the world, and has proved itself to be an essential tool in the handling and integration of large chemical databases. InChI version 1.05 was released in January 2017 and version 1.06 in December 2020. In this paper, we report on the current state of the InChI Software, the details of the improvements in the v1.06 release, and the results of a test of the InChI run on PubChem, a database of more than a hundred million molecules. The upgrade introduces significant new features, including support for pseudo-element atoms and an improved description of polymers. We expect that few, if any, applications using the standard InChI will need to change as a result of the changes in version 1.06. Numerical instability was discovered for 0.002% of this database, and a small number of other molecules were discovered for which the algorithm did not run smoothly. On the basis of PubChem data, we can demonstrate that InChI version 1.05 was 99.996% accurate, and InChI version 1.06 represents a step closer to perfection. Finally, we look forward to future releases and extensions for the InChI Chemical identifier.

Journal ArticleDOI
TL;DR: The South African Natural Compounds Database (SANCDB) as discussed by the authors has been updated to provide direct links to commercially available analogs from two major chemical databases namely Mcule and MolPort.
Abstract: South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/ ) is the sole and a fully referenced database of natural chemical compounds of South African biodiversity. It is freely available, and since its inception in 2015, the database has become an important resource to several studies. Its content has been: used as training data for machine learning models; incorporated to larger databases; and utilized in drug discovery studies for hit identifications. Here, we report the updated version of SANCDB. The new version includes 412 additional compounds that have been reported since 2015, giving a total of 1012 compounds in the database. Further, although natural products (NPs) are an important source of unique scaffolds, they have a major drawback due to their complex structure resulting in low synthetic feasibility in the laboratory. With this in mind, SANCDB is, now, updated to provide direct links to commercially available analogs from two major chemical databases namely Mcule and MolPort. To our knowledge, this feature is not available in other NP databases. Additionally, for easier access to information by users, the database and website interface were updated. The compounds are now downloadable in many different chemical formats. The drug discovery process relies heavily on NPs due to their unique chemical organization. This has inspired the establishment of numerous NP chemical databases. With the emergence of newer chemoinformatic technologies, existing chemical databases require constant updates to facilitate information accessibility and integration by users. Besides increasing the NPs compound content, the updated SANCDB allows users to access the individual compounds (if available) or their analogs from commercial databases seamlessly.

Journal ArticleDOI
TL;DR: In this paper, a deep learning neural machine translation approach is proposed to generate the IUPAC name for a given molecule from its SMILES string as well as the reverse translation.
Abstract: Chemical compounds can be identified through a graphical depiction, a suitable string representation, or a chemical name. A universally accepted naming scheme for chemistry was established by the International Union of Pure and Applied Chemistry (IUPAC) based on a set of rules. Due to the complexity of this ruleset a correct chemical name assignment remains challenging for human beings and there are only a few rule-based cheminformatics toolkits available that support this task in an automated manner. Here we present STOUT (SMILES-TO-IUPAC-name translator), a deep-learning neural machine translation approach to generate the IUPAC name for a given molecule from its SMILES string as well as the reverse translation, i.e. predicting the SMILES string from the IUPAC name. In both cases, the system is able to predict with an average BLEU score of about 90% and a Tanimoto similarity index of more than 0.9. Also incorrect predictions show a remarkable similarity between true and predicted compounds.

Journal ArticleDOI
TL;DR: In this article, the authors examined the efficacy of fingerprint-based machine learning models for a large number of ADMET-related properties, including absorption, distribution, metabolism, excretion, and toxicity.
Abstract: The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs plays a key role in determining which among the potential candidates are to be prioritized. In silico approaches based on machine learning methods are becoming increasing popular, but are nonetheless limited by the availability of data. With a view to making both data and models available to the scientific community, we have developed FPADMET which is a repository of molecular fingerprint-based predictive models for ADMET properties. In this article, we have examined the efficacy of fingerprint-based machine learning models for a large number of ADMET-related properties. The predictive ability of a set of 20 different binary fingerprints (based on substructure keys, atom pairs, local path environments, as well as custom fingerprints such as all-shortest paths) for over 50 ADMET and ADMET-related endpoints have been evaluated as part of the study. We find that for a majority of the properties, fingerprint-based random forest models yield comparable or better performance compared with traditional 2D/3D molecular descriptors. The models are made available as part of open access software that can be downloaded from https://gitlab.com/vishsoft/fpadmet .

Journal ArticleDOI
Fan Hu1, Jiaxin Jiang1, Dongqi Wang1, Muchun Zhu1, Peng Yin1 
TL;DR: This work presents an interpretable multi-task model to evaluate protein–ligand interaction (Multi-PLI), which outperforms traditional docking and machine learning on both binary classification and regression tasks and achieves competitive results compared with some structure-based deep learning methods, even with the same training set size.
Abstract: The assessment of protein–ligand interactions is critical at early stage of drug discovery. Computational approaches for efficiently predicting such interactions facilitate drug development. Recently, methods based on deep learning, including structure- and sequence-based models, have achieved impressive performance on several different datasets. However, their application still suffers from a generalizability issue because of insufficient data, especially for structure based models, as well as a heterogeneity problem because of different label measurements and varying proteins across datasets. Here, we present an interpretable multi-task model to evaluate protein–ligand interaction (Multi-PLI). The model can run classification (binding or not) and regression (binding affinity) tasks concurrently by unifying different datasets. The model outperforms traditional docking and machine learning on both binary classification and regression tasks and achieves competitive results compared with some structure-based deep learning methods, even with the same training set size. Furthermore, combined with the proposed occlusion algorithm, the model can predict the important amino acids of proteins that are crucial for binding, thus providing a biological interpretation.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the use of atomic environment vectors and feed-forward neural networks, the building blocks of several neural network potentials, for the prediction of protein-ligand binding affinity, which is shown to perform as well or better than other state-of-the-art scoring functions on binding affinity prediction, with an RMSE of 1.22 pK units and a Pearson's correlation coefficient of 0.83.
Abstract: Scoring functions for the prediction of protein-ligand binding affinity have seen renewed interest in recent years when novel machine learning and deep learning methods started to consistently outperform classical scoring functions. Here we explore the use of atomic environment vectors (AEVs) and feed-forward neural networks, the building blocks of several neural network potentials, for the prediction of protein-ligand binding affinity. The AEV-based scoring function, which we term AEScore, is shown to perform as well or better than other state-of-the-art scoring functions on binding affinity prediction, with an RMSE of 1.22 pK units and a Pearson’s correlation coefficient of 0.83 for the CASF-2016 benchmark. However, AEScore does not perform as well in docking and virtual screening tasks, for which it has not been explicitly trained. Therefore, we show that the model can be combined with the classical scoring function AutoDock Vina in the context of $$\Delta$$ -learning, where corrections to the AutoDock Vina scoring function are learned instead of the protein-ligand binding affinity itself. Combined with AutoDock Vina, $$\Delta$$ -AEScore has an RMSE of 1.32 pK units and a Pearson’s correlation coefficient of 0.80 on the CASF-2016 benchmark, while retaining the docking and screening power of the underlying classical scoring function.

Journal ArticleDOI
TL;DR: Miranda-Quintana et al. as discussed by the authors introduced a straightforward computational framework for comparing multiple objects at the same time and provided extended formulas for as many similarity metrics as possible.
Abstract: Quantification of the similarity of objects is a key concept in many areas of computational science. This includes cheminformatics, where molecular similarity is usually quantified based on binary fingerprints. While there is a wide selection of available molecular representations and similarity metrics, there were no previous efforts to extend the computational framework of similarity calculations to the simultaneous comparison of more than two objects (molecules) at the same time. The present study bridges this gap, by introducing a straightforward computational framework for comparing multiple objects at the same time and providing extended formulas for as many similarity metrics as possible. In the binary case (i.e. when comparing two molecules pairwise) these are naturally reduced to their well-known formulas. We provide a detailed analysis on the effects of various parameters on the similarity values calculated by the extended formulas. The extended similarity indices are entirely general and do not depend on the fingerprints used. Two types of variance analysis (ANOVA) help to understand the main features of the indices: (i) ANOVA of mean similarity indices; (ii) ANOVA of sum of ranking differences (SRD). Practical aspects and applications of the extended similarity indices are detailed in the accompanying paper: Miranda-Quintana et al. J Cheminform. 2021. https://doi.org/10.1186/s13321-021-00504-4 . Python code for calculating the extended similarity metrics is freely available at: https://github.com/ramirandaq/MultipleComparisons .

Posted ContentDOI
TL;DR: This study demonstrates that SSL can increase the prediction power of models by learning from unannotated data, and the same technique is expected to be beneficial to other chemical property prediction tasks by utilizing existing large chemical databases.
Abstract: As safety is one of the most important properties of drugs, chemical toxicology prediction has received increasing attentions in the drug discovery research. Traditionally, researchers rely on in vitro and in vivo experiments to test the toxicity of chemical compounds. However, not only are these experiments time consuming and costly, but experiments that involve animal testing are increasingly subject to ethical concerns. While traditional machine learning (ML) methods have been used in the field with some success, the limited availability of annotated toxicity data is the major hurdle for further improving model performance. Inspired by the success of semi-supervised learning (SSL) algorithms, we propose a Graph Convolution Neural Network (GCN) to predict chemical toxicity and trained the network by the Mean Teacher (MT) SSL algorithm. Using the Tox21 data, our optimal SSL-GCN models for predicting the twelve toxicological endpoints achieve an average ROC-AUC score of 0.757 in the test set, which is a 6% improvement over GCN models trained by supervised learning and conventional ML methods. Our SSL-GCN models also exhibit superior performance when compared to models constructed using the built-in DeepChem ML methods. This study demonstrates that SSL can increase the prediction power of models by learning from unannotated data. The optimal unannotated to annotated data ratio ranges between 1:1 and 4:1. This study demonstrates the success of SSL in chemical toxicity prediction; the same technique is expected to be beneficial to other chemical property prediction tasks by utilizing existing large chemical databases. Our optimal model SSL-GCN is hosted on an online server accessible through: https://app.cbbio.online/ssl-gcn/home. Supplementary information Supplementary information accompanies this paper at 10.1186/s13321-021-00570-8.

Journal ArticleDOI
TL;DR: SMPLIP-score as discussed by the authors embeds the interaction fingerprint pattern on the ligand-binding site environment and molecular fragments of ligands into an input vectorized matrix for learning layers (random forest or deep neural network).
Abstract: In drug discovery, rapid and accurate prediction of protein–ligand binding affinities is a pivotal task for lead optimization with acceptable on-target potency as well as pharmacological efficacy. Furthermore, researchers hope for a high correlation between docking score and pose with key interactive residues, although scoring functions as free energy surrogates of protein–ligand complexes have failed to provide collinearity. Recently, various machine learning or deep learning methods have been proposed to overcome the drawbacks of scoring functions. Despite being highly accurate, their featurization process is complex and the meaning of the embedded features cannot directly be interpreted by human recognition without an additional feature analysis. Here, we propose SMPLIP-Score (Substructural Molecular and Protein–Ligand Interaction Pattern Score), a direct interpretable predictor of absolute binding affinity. Our simple featurization embeds the interaction fingerprint pattern on the ligand-binding site environment and molecular fragments of ligands into an input vectorized matrix for learning layers (random forest or deep neural network). Despite their less complex features than other state-of-the-art models, SMPLIP-Score achieved comparable performance, a Pearson’s correlation coefficient up to 0.80, and a root mean square error up to 1.18 in pK units with several benchmark datasets (PDBbind v.2015, Astex Diverse Set, CSAR NRC HiQ, FEP, PDBbind NMR, and CASF-2016). For this model, generality, predictive power, ranking power, and robustness were examined using direct interpretation of feature matrices for specific targets.