scispace - formally typeset
Search or ask a question

Showing papers in "Nature plants in 2021"


Journal ArticleDOI
TL;DR: In this paper, the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions, was highlighted.
Abstract: Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.

150 citations


Journal ArticleDOI
TL;DR: In this paper, the root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition.
Abstract: Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.

137 citations


Journal ArticleDOI
TL;DR: In this article, the authors used CRISPR-Cas9 genome editing to increase maize grain-yield-related traits, such as increase in meristem size and increase in the peptide signal in the CLAVATA-WUSCHEL pathway.
Abstract: Several yield-related traits selected during crop domestication and improvement1,2 are associated with increases in meristem size3, which is controlled by CLE peptide signals in the CLAVATA-WUSCHEL pathway4-13. Here, we engineered quantitative variation for yield-related traits in maize by making weak promoter alleles of CLE genes, and a null allele of a newly identified partially redundant compensating CLE gene, using CRISPR-Cas9 genome editing. These strategies increased multiple maize grain-yield-related traits, supporting the enormous potential for genomic editing in crop enhancement.

130 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on recent discoveries in reactive oxygen species (ROS) biology emphasizing abiotic and biotic stress responses and highlight the importance of both amino-and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation.
Abstract: Reactive oxygen species (ROS) are essential for life and are involved in the regulation of almost all biological processes. ROS production is critical for plant development, response to abiotic stresses and immune responses. Here, we focus on recent discoveries in ROS biology emphasizing abiotic and biotic stress responses. Recent advancements have resulted in the identification of one of the first sensors for extracellular ROS and highlighted waves of ROS production during stress signalling in Arabidopsis. Enzymes that produce ROS, including NADPH oxidases, exhibit precise regulation through diverse post-translational modifications. Discoveries highlight the importance of both amino- and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation. Here, we discuss advancements in ROS compartmentalization, systemic ROS waves, ROS sensing and post-translational modification of ROS-producing enzymes and identify areas where foundational gaps remain. This Review covers the recent advancements in our understanding of reactive oxygen species production, regulation and perception in plants. It is primarily focused on stress responses and the role of NADPH oxidases.

127 citations


Journal ArticleDOI
TL;DR: This paper performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana.
Abstract: Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.

117 citations


Journal ArticleDOI
TL;DR: In this article, the Spry toolbox has been used to break the PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion, achieving up to 79% editing efficiency with high product purity.
Abstract: The rapid development of the CRISPR–Cas9, –Cas12a and –Cas12b genome editing systems has greatly fuelled basic and translational plant research1–6. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G)7, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant8. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox. An engineered SpRY Cas9 variant enables efficient gene editing without PAM requirement in rice transgenic lines and Dahurian larch protoplasts, and its derived base editors can edit the rice genome efficiently in a PAM-less fashion too.

111 citations


Journal ArticleDOI
TL;DR: A review of the current status of base editors and prime editors in plants is provided in this paper, which summarizes both technological developments and biological applications of these precise genome editors, including base editing and prime editing technologies.
Abstract: The development of CRISPR–Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications. This Review summarizes the current status of base editors and prime editors in plants, reporting both technological developments and biological applications of these precise genome editors.

110 citations


Journal ArticleDOI
TL;DR: In this paper, a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation, is provided, showing that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species.
Abstract: The field of plant genome sequencing has grown rapidly in the past 20 years, leading to increases in the quantity and quality of publicly available genomic resources. The growing wealth of genomic data from an increasingly diverse set of taxa provides unprecedented potential to better understand the genome biology and evolution of land plants. Here we provide a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation. We show that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species. We identify numerous disconnects between the native range of focal species and the national affiliation of the researchers studying them, which we argue are rooted in colonialism-both past and present. Luckily, falling sequencing costs, widening availability of analytical tools and an increasingly connected scientific community provide key opportunities to improve existing assemblies, fill sampling gaps and empower a more global plant genomics community.

98 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identified several RNA-binding proteins in Arabidopsis, including Argonaute 1 (AGO1), RNA helicases (RHs), and annexins (ANNs), which are secreted by exosome-like EVs.
Abstract: Plants use extracellular vesicles (EVs) to transport small RNAs (sRNAs) into their fungal pathogens and silence fungal virulence-related genes through a phenomenon called ‘cross-kingdom RNAi’. It remains unknown, however, how sRNAs are selectively loaded into EVs. Here, we identified several RNA-binding proteins in Arabidopsis, including Argonaute 1 (AGO1), RNA helicases (RHs) and annexins (ANNs), which are secreted by exosome-like EVs. AGO1, RH11 and RH37 selectively bind to EV-enriched sRNAs but not to non-EV-associated sRNAs, suggesting that they contribute to the selective loading of sRNAs into EVs. Conversely, ANN1 and ANN2 bind to sRNAs non-specifically. The ago1, rh11 rh37 and ann1 ann2 mutants showed reduced secretion of sRNAs in EVs, demonstrating that these RNA-binding proteins play an important role in sRNA loading and/or stabilization in EVs. Furthermore, rh11 rh37 and ann1 ann2 showed increased susceptibility to Botrytis cinerea, suggesting that RH11, RH37, ANN1 and ANN2 positively regulate plant immunity against B. cinerea. Plants use extracellular vesicles to deliver small RNAs that could silence fungal virulence genes to their fungal pathogens. In this study, the authors profile the components of these extracellular vesicles and investigate regulators contributing to the specific RNA loading and stabilization.

94 citations


Journal ArticleDOI
TL;DR: In this article, the convergence of precision agriculture, in which farmers respond in real-time to changes in crop growth with nanotechnology and artificial intelligence, offers exciting opportunities for sustainable food production.
Abstract: Climate change, increasing populations, competing demands on land for production of biofuels and declining soil quality are challenging global food security. Finding sustainable solutions requires bold new approaches and integration of knowledge from diverse fields, such as materials science and informatics. The convergence of precision agriculture, in which farmers respond in real time to changes in crop growth with nanotechnology and artificial intelligence, offers exciting opportunities for sustainable food production. Coupling existing models for nutrient cycling and crop productivity with nanoinformatics approaches to optimize targeting, uptake, delivery, nutrient capture and long-term impacts on soil microbial communities will enable design of nanoscale agrochemicals that combine optimal safety and functionality profiles.

86 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduce the historical arc of agricultural microbiome research, highlight current progress and emerging strategies for intentional microbiome manipulation to enhance crop performance and sustainability, and identify key knowledge gaps in our understanding of microbe-assisted crop production.
Abstract: Substantial efforts to characterize the structural and functional diversity of soil, plant and insect-associated microbial communities have illuminated the complex interacting domains of crop-associated microbiomes that contribute to agroecosystem health. As a result, plant-associated microorganisms have emerged as an untapped resource for combating challenges to agricultural sustainability. However, despite growing interest in maximizing microbial functions for crop production, resource efficiency and stress resistance, research has struggled to harness the beneficial properties of agricultural microbiomes to improve crop performance. Here, we introduce the historical arc of agricultural microbiome research, highlighting current progress and emerging strategies for intentional microbiome manipulation to enhance crop performance and sustainability. We synthesize current practices and limitations to managing agricultural microbiomes and identify key knowledge gaps in our understanding of microbe-assisted crop production. Finally, we propose research priorities that embrace a holistic view of crop microbiomes for achieving precision microbiome management that is tailored, predictive and integrative in diverse agricultural systems. Managing agricultural microbiomes is an efficient approach to improve crop performance in agroecosystems. This Review summarizes the current state of knowledge from less to more targeted approaches to manage soil, plant and pest-associated microbiomes. The authors also identify the knowledge gaps in relation to current agricultural practices in microbiome management.

Journal ArticleDOI
TL;DR: In this article, the authors solved the structure of a photosystem II (PSII) assembly intermediate from Thermosynechococcus elongatus at 2.94 A resolution and revealed mechanisms protecting against photodamage during vulnerable stages of biogenesis.
Abstract: Biogenesis of photosystem II (PSII), nature’s water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 A resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction. Photosystems need auxiliary proteins to assist their assembly. Cryo-electron microscopy of a cyanobacterial photosystem II assembly intermediate at 2.94 A reveals mechanisms protecting against photodamage during vulnerable stages of biogenesis.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a robust RNA-guided CRISPR activation (CRISPR-Act3.0) system in rice, Arabidopsis and tomato, through systematically exploring different effector recruitment strategies and various transcription activators.
Abstract: RNA-guided CRISPR activation (CRISPRa) systems have been developed in plants. However, the simultaneous activation of multiple genes remains challenging. Here, we develop a highly robust CRISPRa system working in rice, Arabidopsis and tomato, CRISPR-Act3.0, through systematically exploring different effector recruitment strategies and various transcription activators based on deactivated Streptococcus pyogenes Cas9 (dSpCas9). The CRISPR-Act3.0 system results in fourfold to sixfold higher activation than the state-of-the-art CRISPRa systems. We further develop a tRNA-gR2.0 (single guide RNA 2.0) expression system enabling CRISPR-Act3.0-based robust activation of up to seven genes for metabolic engineering in rice. In addition, CRISPR-Act3.0 allows the simultaneous modification of multiple traits in Arabidopsis, which are stably transmitted to the T3 generations. On the basis of CRISPR-Act3.0, we elucidate guide RNA targeting rules for effective transcriptional activation. To target T-rich protospacer adjacent motifs (PAMs), we transfer this activation strategy to CRISPR-dCas12b and further improve the dAaCas12b-based CRISPRa system. Moreover, we develop a potent near-PAM-less CRISPR-Act3.0 system on the basis of the SpRY dCas9 variant, which outperforms the dCas9-NG system in both activation potency and targeting scope. Altogether, our study has substantially improved the CRISPRa technology in plants and provided plant researchers a powerful toolbox for efficient gene activation in foundational and translational research.

Journal ArticleDOI
TL;DR: In this paper, the effect of FER on rhizosphere pseudomonads was largely independent of its immune scaffold function, role in development and jasmonic acid autoimmunity.
Abstract: Maintaining microbiome structure is critical for the health of both plants and animals. By re-screening a collection of Arabidopsis mutants affecting root immunity and hormone crosstalk, we identified a FERONIA (FER) receptor kinase mutant (fer-8) with a rhizosphere microbiome enriched in Pseudomonas fluorescens without phylum-level dysbiosis. Using microbiome transplant experiments, we found that the fer-8 microbiome was beneficial. The effect of FER on rhizosphere pseudomonads was largely independent of its immune scaffold function, role in development and jasmonic acid autoimmunity. We found that the fer-8 mutant has reduced basal levels of reactive oxygen species (ROS) in roots and that mutants deficient in NADPH oxidase showed elevated rhizosphere pseudomonads. The addition of RALF23 peptides, a FER ligand, was sufficient to enrich P. fluorescens. This work shows that FER-mediated ROS production regulates levels of beneficial pseudomonads in the rhizosphere microbiome.

Journal ArticleDOI
TL;DR: In this paper, a detailed temporal characterization of root-associated microbiomes of rice plants during drought stress and recovery was performed, showing that root communities remained compositionally altered after rewatering, with prolonged droughts leading to decreased resilience.
Abstract: Microbial symbioses can mitigate drought stress in crops but harnessing these beneficial interactions will require an in-depth understanding of root microbiome responses to drought cycles. Here, by detailed temporal characterization of root-associated microbiomes of rice plants during drought stress and recovery, we find that endosphere communities remained compositionally altered after rewatering, with prolonged droughts leading to decreased resilience. Several endospheric Actinobacteria were significantly enriched during drought and for weeks after rewatering. Notably, the most abundant endosphere taxon during this period was a Streptomyces, and a corresponding isolate promoted root growth. Additionally, drought stress disrupted the temporal dynamics of late-colonizing microorganisms, permanently altering the normal successional trends of root microbiota. These findings reveal that severe drought results in enduring impacts on rice root microbiomes, including enrichment of taxonomic groups that could shape the recovery response of the host, and have implications relevant to drought protection strategies using root microbiota.

Journal ArticleDOI
TL;DR: It is suggested that RGI-non-suppressive and suppressive root commensals modulate host susceptibility to pathogens by either eliciting or dampening MTI responses, respectively, which buffers the plant immune system against pathogen perturbation and defense-associated growth inhibition, ultimately leading to commensal-host homeostasis.
Abstract: Plants grown in natural soil are colonized by phylogenetically structured communities of microbes known as the microbiota. Individual microbes can activate microbe-associated molecular pattern (MAMP)-triggered immunity (MTI), which limits pathogen proliferation but curtails plant growth, a phenomenon known as the growth-defence trade-off. Here, we report that, in monoassociations, 41% (62 out of 151) of taxonomically diverse root bacterial commensals suppress Arabidopsis thaliana root growth inhibition (RGI) triggered by immune-stimulating MAMPs or damage-associated molecular patterns. Amplicon sequencing of bacterial 16S rRNA genes reveals that immune activation alters the profile of synthetic communities (SynComs) comprising RGI-non-suppressive strains, whereas the presence of RGI-suppressive strains attenuates this effect. Root colonization by SynComs with different complexities and RGI-suppressive activities alters the expression of 174 core host genes, with functions related to root development and nutrient transport. Furthermore, RGI-suppressive SynComs specifically downregulate a subset of immune-related genes. Precolonization of plants with RGI-suppressive SynComs, or mutation of one commensal-downregulated transcription factor, MYB15, renders the plants more susceptible to opportunistic Pseudomonas pathogens. Our results suggest that RGI-non-suppressive and RGI-suppressive root commensals modulate host susceptibility to pathogens by either eliciting or dampening MTI responses, respectively. This interplay buffers the plant immune system against pathogen perturbation and defence-associated growth inhibition, ultimately leading to commensal-host homeostasis.

Journal ArticleDOI
TL;DR: In this article, the authors proposed an alternative approach that transiently targets various regulatory circuits within a plant, leading to operator-specified alterations of agronomic traits, such as time of flowering, vernalization requirement, plant height or drought tolerance.
Abstract: The development of a new crop variety is a time-consuming and costly process due to the reliance of plant breeding on gene shuffling to introduce desired genes into elite germplasm, followed by backcrossing. Here, we propose alternative technology that transiently targets various regulatory circuits within a plant, leading to operator-specified alterations of agronomic traits, such as time of flowering, vernalization requirement, plant height or drought tolerance. We redesigned techniques of gene delivery, amplification and expression around RNA viral transfection methods that can be implemented on an industrial scale and with many crop plants. The process does not involve genetic modification of the plant genome and is thus limited to a single plant generation, is broadly applicable, fast, tunable and versatile, and can be used throughout much of the crop cultivation cycle. The RNA-based reprogramming may be especially useful in plant pathogen pandemics but also for commercial seed production and for rapid adaptation of orphan crops. The implementation of RNA viral transfection technology in multiple plant species allows transient expression or silencing of specific regulatory genes in various regulatory circuits to rapidly fine-tune multiple traits without modifying the genome.

Journal ArticleDOI
TL;DR: Jin-Soo Kim (  jskim01@snu.ac.kr) Institute for Basic Science ( http://orcid.org/0000-0003-4847-1306)
Abstract: Plant organelles including mitochondria and chloroplasts contain their own genomes, which encode many genes essential for respiration and photosynthesis, respectively. Gene editing in plant organelles, an unmet need for plant genetics and biotechnology, has been hampered by the lack of appropriate tools for targeting DNA in these organelles. In this study, we developed a Golden Gate cloning system1, composed of 16 expression plasmids (8 for the delivery of the resulting protein to mitochondria and the other 8 for delivery to chloroplasts) and 424 transcription activator-like effector subarray plasmids, to assemble DddA-derived cytosine base editor (DdCBE)2 plasmids and used the resulting DdCBEs to efficiently promote point mutagenesis in mitochondria and chloroplasts. Our DdCBEs induced base editing in lettuce or rapeseed calli at frequencies of up to 25% (mitochondria) and 38% (chloroplasts). We also showed DNA-free base editing in chloroplasts by delivering DdCBE mRNA to lettuce protoplasts to avoid off-target mutations caused by DdCBE-encoding plasmids. Furthermore, we generated lettuce calli and plantlets with edit frequencies of up to 99%, which were resistant to streptomycin or spectinomycin, by introducing a point mutation in the chloroplast 16S rRNA gene.

Journal ArticleDOI
TL;DR: In this paper, the root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae.
Abstract: Plant roots acquire nutrients and water while managing interactions with the soil microbiota. The root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, suberin lamellae display plasticity, which is crucial for root adaptative responses. Although suberin is a major plant polymer, fundamental aspects of its biosynthesis and turnover have remained obscure. Plants shape their root system via lateral root formation, an auxin-induced process requiring local breaking and re-sealing of endodermal lignin and suberin barriers. Here, we show that differentiated endodermal cells have a specific, auxin-mediated transcriptional response dominated by cell wall remodelling genes. We identified two sets of auxin-regulated GDSL lipases. One is required for suberin synthesis, while the other can drive suberin degradation. These enzymes have key roles in suberization, driving root suberin plasticity.

Journal ArticleDOI
TL;DR: A nearly complete genome assembly for Ginkgo biloba with a genome size of 9.87 Gb, an N 50 contig size of 1.58 Mb and an N50 scaffold size of 775 mb was reported in this paper.
Abstract: Gymnosperms are a unique lineage of plants that currently lack a high-quality reference genome due to their large genome size and high repetitive sequence content. Here, we report a nearly complete genome assembly for Ginkgo biloba with a genome size of 9.87 Gb, an N50 contig size of 1.58 Mb and an N50 scaffold size of 775 Mb. We were able to accurately annotate 27,832 protein-coding genes in total, superseding the inaccurate annotation of 41,840 genes in a previous draft genome assembly. We found that expansion of the G. biloba genome, accompanied by the notable extension of introns, was mainly caused by the insertion of long terminal repeats rather than the recent occurrence of whole-genome duplication events, in contrast to the findings of a previous report. We also identified candidate genes in the central pair, intraflagellar transport and dynein protein families that are associated with the formation of the spermatophore flagellum, which has been lost in all seed plants except ginkgo and cycads. The newly obtained Ginkgo genome provides new insights into the evolution of the gymnosperm genome. Analyses on a newly assembled, nearly complete genome of Ginkgo biloba revealed the cause of genome expansion and candidate genes associated with the formation of spermatophore flagellum in ginkgo, advancing our understanding about gymnosperm evolution.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper have completed a chromosome-level genome of Taxus chinensis var. mairei with a total length of 10.23 gigabases and discovered a unique physical and functional grouping of CYP725As (cytochrome P450) in the Taxus genome for paclitaxel biosynthesis.
Abstract: The ancient gymnosperm genus Taxus is the exclusive source of the anticancer drug paclitaxel, yet no reference genome sequences are available for comprehensively elucidating the paclitaxel biosynthesis pathway. We have completed a chromosome-level genome of Taxus chinensis var. mairei with a total length of 10.23 gigabases. Taxus shared an ancestral whole-genome duplication with the coniferophyte lineage and underwent distinct transposon evolution. We discovered a unique physical and functional grouping of CYP725As (cytochrome P450) in the Taxus genome for paclitaxel biosynthesis. We also identified a gene cluster for taxadiene biosynthesis, which was formed mainly by gene duplications. This study will facilitate the elucidation of paclitaxel biosynthesis and unleash the biotechnological potential of Taxus.

Journal ArticleDOI
TL;DR: In this paper, a pan-genome of 44,079 gene families with 222.6 mb of new sequence identified was generated for the sorghum primary gene pool, and the distribution of these variations was influenced by variation of recombination rate and transposable element content across the genome.
Abstract: Sorghum is a drought-tolerant staple crop for half a billion people in Africa and Asia, an important source of animal feed throughout the world and a biofuel feedstock of growing importance. Cultivated sorghum and its inter-fertile wild relatives constitute the primary gene pool for sorghum. Understanding and characterizing the diversity within this valuable resource is fundamental for its effective utilization in crop improvement. Here, we report analysis of a sorghum pan-genome to explore genetic diversity within the sorghum primary gene pool. We assembled 13 genomes representing cultivated sorghum and its wild relatives, and integrated them with 3 other published genomes to generate a pan-genome of 44,079 gene families with 222.6 Mb of new sequence identified. The pan-genome displays substantial gene-content variation, with 64% of gene families showing presence/absence variation among genomes. Comparisons between core genes and dispensable genes suggest that dispensable genes are important for sorghum adaptation. Extensive genetic variation was uncovered within the pan-genome, and the distribution of these variations was influenced by variation of recombination rate and transposable element content across the genome. We identified presence/absence variants that were under selection during sorghum domestication and improvement, and demonstrated that such variation had important phenotypic outcomes that could contribute to crop improvement. The constructed sorghum pan-genome represents an important resource for sorghum improvement and gene discovery.

Journal ArticleDOI
TL;DR: In this paper, the authors used in vitro and in planta approaches to show that the Arabidopsis thaliana F-group bZIP transcription factors function as Zn sensors by binding Zn2+ ions to a Zn-sensor motif.
Abstract: Zinc (Zn) is an essential micronutrient for plants and animals owing to its structural and catalytic roles in many proteins1. Zn deficiency affects around 2 billion people, mainly those who live on plant-based diets relying on crops from Zn-deficient soils2,3. Plants maintain adequate Zn levels through tightly regulated Zn homeostasis mechanisms involving Zn uptake, distribution and storage4, but evidence of how they sense Zn status is lacking. Here, we use in vitro and in planta approaches to show that the Arabidopsis thaliana F-group bZIP transcription factors bZIP19 and bZIP23, which are the central regulators of the Zn deficiency response, function as Zn sensors by binding Zn2+ ions to a Zn-sensor motif. Deletions or modifications of this Zn-sensor motif disrupt Zn binding, leading to a constitutive transcriptional Zn deficiency response, which causes a significant increase in plant and seed Zn accumulation. As the Zn-sensor motif is highly conserved in F-group bZIP proteins across land plants, the identification of this plant Zn sensor will promote new strategies to improve the Zn nutritional quality of plant-derived food and feed, and contribute to tackling the global Zn-deficiency health problem. Zinc (Zn) is one of the essential micronutrients for plant growth and development, but the Zn-sensing mechanisms are poorly understood in plants. Two Arabidopsis bZIP transcription factors were previously shown to modulate plant responses to Zn deficiency. In this study, the authors find that they are indeed the sensors of Zn in Arabidopsis.

Journal ArticleDOI
TL;DR: In this article, the authors show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota-root-shoot axis, and that a synthetic root microbial community rescues weak growth under low light and enhances immunity.
Abstract: Bidirectional root–shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota–root–shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth–defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals. A synthetic root microbial community rescues weak growth under low light and enhances immunity in Arabidopsis. Transcription factor MYC2 regulates both this coordination between rhizosphere and shoots and the growth/defence trade-off under low light conditions.

Journal ArticleDOI
TL;DR: A review of the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete can be found in this article.
Abstract: Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.

Journal ArticleDOI
TL;DR: In this paper, it was shown that blue light induces liquid-liquid phase separation of CRY2, co-condensing the interacting m6A writer and altering epitranscriptome with respect to the circadian clock.
Abstract: Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid–liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants. Cryptochromes (CRYs) perform various functions in both plants and animals, including photoperception and circadian regulation. Now it is shown in Arabidopsis that blue light induces liquid–liquid phase separation of CRY2, co-condensing the interacting m6A writer and altering epitranscriptome with respect to the circadian clock.

Journal ArticleDOI
TL;DR: In this article, the authors show that the tissue structure of Arabidopsis thaliana callus on callus-inducing medium is similar to that of the root primordium or root apical meristem, and the middle cell layer with quiescent centre-like transcriptional identity exhibits the ability to regenerate organs.
Abstract: In plant tissue culture, callus forms from detached explants in response to a high-auxin-to-low-cytokinin ratio on callus-inducing medium. Callus is a group of pluripotent cells because it can regenerate either roots or shoots in response to a low level of auxin on root-inducing medium or a high-cytokinin-to-low-auxin ratio on shoot-inducing medium, respectively1. However, our knowledge of the mechanism of pluripotency acquisition during callus formation is limited. On the basis of analyses at the single-cell level, we show that the tissue structure of Arabidopsis thaliana callus on callus-inducing medium is similar to that of the root primordium or root apical meristem, and the middle cell layer with quiescent centre-like transcriptional identity exhibits the ability to regenerate organs. In the middle cell layer, WUSCHEL-RELATED HOMEOBOX5 (WOX5) directly interacts with PLETHORA1 and 2 to promote TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 expression for endogenous auxin production. WOX5 also interacts with the B-type ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) and represses A-type ARRs to break the negative feedback loop in cytokinin signalling. Overall, the promotion of auxin production and the enhancement of cytokinin sensitivity are both required for pluripotency acquisition in the middle cell layer of callus for organ regeneration.

Journal ArticleDOI
TL;DR: It is found that the suppression of miR168 by a target mimic (MIM168) not only improves grain yield and shortens flowering time in rice but also enhances immunity to M. oryzae.
Abstract: MicroRNA168 (miR168) is a key miRNA that targets Argonaute1 (AGO1), a major component of the RNA-induced silencing complex1,2. Previously, we reported that miR168 expression was responsive to infection by Magnaporthe oryzae, the causal agent of rice blast disease3. However, how miR168 regulates immunity to rice blast and whether it affects rice development remains unclear. Here, we report our discovery that the suppression of miR168 by a target mimic (MIM168) not only improves grain yield and shortens flowering time in rice but also enhances immunity to M. oryzae. These results were validated through repeated tests in rice fields in the absence and presence of rice blast pressure. We found that the miR168–AGO1 module regulates miR535 to improve yield by increasing panicle number, miR164 to reduce flowering time, and miR1320 and miR164 to enhance immunity. Our discovery demonstrates that changes in a single miRNA enhance the expression of multiple agronomically important traits. In rice, it is known that miR168 regulates AGO1. Using a target mimic approach to suppress the microRNA enhances resistance against rice blast disease, increases grain yield and shortens growth period, including in field trials.

Journal ArticleDOI
TL;DR: In this article, a new R gene, Rpi-amr1, from Solanum americanum, was positionally cloned and used to achieve durable resistance against P. infestans.
Abstract: Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologues and paralogues. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogues and alleles of the recognized effector, facilitating durable resistance against P. infestans.

Journal ArticleDOI
TL;DR: In this article, the scale-dependent link between solar-induced fluorescence and photosynthesis is introduced, with an emphasis on seven remaining scientific challenges and a roadmap to facilitate future collaborative research towards new applications of SIF.
Abstract: For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.