scispace - formally typeset
Search or ask a question

Showing papers in "Proteomics in 2011"


Journal ArticleDOI
TL;DR: In this review, techniques, software, and statistical analyses used in label‐free quantitative proteomics studies for area under the curve and spectral counting approaches are examined and it is concluded that label‐ free quantitative proteochemistry is a reliable, versatile, and cost‐effective alternative to labelled quantitation.
Abstract: In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation.

659 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the concatenated high pH reversed‐phased strategy is an attractive alternative to strong cation exchange for two‐dimensional shotgun proteomic analysis of trypsin‐digested human MCF10A cell sample.
Abstract: In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed-phase liquid chromatography strategy as a first dimension for two-dimensional liquid chromatography tandem mass spectrometry ("shotgun") proteomic analysis of trypsin-digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed-phase liquid chromatography as a first-dimension fractionation strategy resulted in 1.8- and 1.6-fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed-phased strategy is an attractive alternative to strong cation exchange for two-dimensional shotgun proteomic analysis.

517 citations


Journal ArticleDOI
TL;DR: A user‐friendly, lightweight and open‐source graphical user interface called SearchGUI is presented, for configuring and running the freely available OMSSA (open mass spectrometry search algorithm) and X!Tandem search engines simultaneously.
Abstract: The identification of proteins by mass spectrometry is a standard technique in the field of proteomics, relying on search engines to perform the identifications of the acquired spectra. Here, we present a user-friendly, lightweight and open-source graphical user interface called SearchGUI (http://searchgui.googlecode.com), for configuring and running the freely available OMSSA (open mass spectrometry search algorithm) and X!Tandem search engines simultaneously. Freely available under the permissible Apache2 license, SearchGUI is supported on Windows, Linux and OSX.

330 citations


Journal ArticleDOI
TL;DR: An overview of technical and analytical issues in exosome proteomics is offered, and the significance of proteomic studies in terms of biological and clinical usefulness is highlighted.
Abstract: Exosomes are membranous vesicles released by cells in extracellular fluids: they have been found and analyzed in blood, urine, amniotic fluid, breast milk, seminal fluid, saliva and malignant effusions, besides conditioned media from different cell lines. Several recent papers show that exosome proteomes of different origin include both a common set of membrane and cytosolic proteins, and specific subsets of proteins, likely correlated to cell-type associated functions. This is particularly interesting in relation to their possible involvement in human diseases. The knowledge of exosome proteomics can help not only in understanding their biological roles but also in supplying new biomarkers to be searched for in patients' fluids. This review offers an overview of technical and analytical issues in exosome proteomics, and it highlights the significance of proteomic studies in terms of biological and clinical usefulness.

281 citations


Journal ArticleDOI
TL;DR: This global proteome profile provides a basis for future studies to elucidate the pathological functions of OMVs from P. aeruginosa and identifies 338 vesicular proteins with high confidence by five separate LC‐MS/MS analyses.
Abstract: Pseudomonas aeruginosa, an opportunistic human bacterial pathogen, constitutively secretes outer membrane vesicles (OMVs) into the extracellular milieu. Although recent progress has revealed that OMVs are essential for pathogenesis of P. aeruginosa, their proteins have not been comprehensively analyzed so far. In this study, we identified 338 vesicular proteins with high confidence by five separate LC-MS/MS analyses. This global proteome profile provides a basis for future studies to elucidate the pathological functions of OMVs from P. aeruginosa.

221 citations


Journal ArticleDOI
TL;DR: The current status of serum proteome analysis for the biomarker discovery is discussed and key technological advancements are addressed, with a focus on challenges and amenable solutions.
Abstract: Serum is an ideal biological sample that contains an archive of information due to the presence of a variety of proteins released by diseased tissue, and serum proteomics has gained considerable interest for the disease biomarker discovery. Easy accessibility and rapid protein changes in response to disease pathogenesis makes serum an attractive sample for clinical research. Despite these advantages, the analysis of serum proteome is very challenging due to the wide dynamic range of proteins, difficulty in finding low-abundance target analytes due to the presence of high-abundance serum proteins, high levels of salts and other interfering compounds, variations among individuals and paucity of reproducibility. Sample preparation introduces pre-analytical variations and poses major challenges to analyze the serum proteome. The label-free detection techniques such as surface plasmon resonance, microcantilever, few nanotechniques and different resonators are rapidly emerging for the analysis of serum proteome and they have exhibited potential to overcome few limitations of the conventional techniques. In this article, we will discuss the current status of serum proteome analysis for the biomarker discovery and address key technological advancements, with a focus on challenges and amenable solutions.

208 citations


Journal ArticleDOI
TL;DR: The possibility of identifying biomarker candidates for human urinary diseases using urinary exosomes is shown and might help to understand the pathophysiology of early IgAN and TBMN at the protein level.
Abstract: To identify biomarker candidates associated with early IgA nephropathy (IgAN) and thin basement membrane nephropathy (TBMN), the most common causes presenting isolated hematuria in childhood, a proteomic approach of urinary exosomes from early IgAN and TBMN patients was introduced. The proteomic results from the patients were compared with a normal group to understand the pathophysiological processes associated with these diseases at the protein level. The urinary exosomes, which reflect pathophysiological processes, collected from three groups of young adults (early IgAN, TBMN, and normal) were trypsin-digested using a gel-assisted protocol, and quantified by label-free LC-MS/MS, using an MS(E) mode. A total of 1877 urinary exosome proteins, including cytoplasmic, membrane, and vesicle trafficking proteins, were identified. Among the differentially expressed proteins, four proteins (aminopeptidase N, vasorin precursor, α-1-antitrypsin, and ceruloplasmin) were selected as biomarker candidates to differentiate early IgAN from TBMN. We confirmed the protein levels of the four biomarker candidates by semi-quantitative immunoblot analysis in urinary exosomes independently prepared from other patients, including older adult groups. Further clinical studies are needed to investigate the diagnostic and prognostic value of these urinary markers for early IgAN and TBMN. Taken together, this study showed the possibility of identifying biomarker candidates for human urinary diseases using urinary exosomes and might help to understand the pathophysiology of early IgAN and TBMN at the protein level.

204 citations


Journal ArticleDOI
TL;DR: Evidence is provided that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis.
Abstract: Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.

202 citations


Journal ArticleDOI
TL;DR: Improvements to both sample preparation strategies and analytical platforms (aimed at both spectrum acquisition and post‐acquisition analysis) will enhance the relevance of MALDI‐MSI technology in plant research.
Abstract: Recent advances in instrumentation and sample preparation have facilitated the mass spectrometric (MS) imaging of a large variety of biological molecules from small metabolites to large proteins. The technique can be applied at both the tissue and the single-cell level, and provides information regarding the spatial distribution of specific molecules. Nevertheless, the use of MS imaging in plant science remains far from routine, and there is still a need to adapt protocols to suit specific tissues. We present an overview of MALDI-imaging MS (MSI) technology and its use for the analysis of plant tissue. Recent methodological developments have been summarized, and the major challenges involved in using MALDI-MSI, including sample preparation, the analysis of metabolites and peptides, and strategies for data evaluation are all discussed. Some attention is given to the identification of differentially distributed compounds. To date, the use of MALDI-MSI in plant research has been limited. Examples include leaf surface metabolite maps, the characterization of soluble metabolite translocation in planta, and the profiling of protein/metabolite patterns in cereal grain cross-sections. Improvements to both sample preparation strategies and analytical platforms (aimed at both spectrum acquisition and post-acquisition analysis) will enhance the relevance of MALDI-MSI technology in plant research.

193 citations


Journal ArticleDOI
TL;DR: Stem cells of mesenchymal, adipose, neural and embryonic origin, fibroblast feeder cells as well as primary isolate of astrocytes, endothelial and muscle cells have recently become targets of intensive secretome profiling with the search for proteins regulating cell survival, proliferation, differentiation or inflammatory response.
Abstract: Within a mammalian organism, the interaction among cells both at short and long distances is mediated by soluble factors released by cells into the extracellular environment. The secreted proteins may involve extracellular matrix proteins, proteinases, growth factors, protein hormones, immunoregulatory cytokines, chemokines or other bioactive molecules that have a direct impact on target cell phenotype. Stem cells of mesenchymal, adipose, neural and embryonic origin, fibroblast feeder cells as well as primary isolates of astrocytes, endothelial and muscle cells have recently become targets of intensive secretome profiling with the search for proteins regulating cell survival, proliferation, differentiation or inflammatory response. Recent advances and challenges of the stem cell and primary cell secretome analysis together with the most relevant results are discussed in this review.

193 citations


Journal ArticleDOI
TL;DR: This work allowed us to provide a finer picture of general signaling, regulatory and metabolic pathways that appeared to be affected upon Cd stress, and concludes on the advantage of employing different approaches of global proteome‐ and metabolome‐wide techniques, combined with more targeted analysis to answer molecular questions and unravel biological networks.
Abstract: Monitoring molecular dynamics of an organism upon stress is probably the best approach to decipher physiological mechanisms involved in the stress response. Quantitative analysis of proteins and metabolites is able to provide accurate information about molecular changes allowing the establishment of a range of more or less specific mechanisms, leading to the identification of major players in the considered pathways. Such tools have been successfully used to analyze the plant response to cadmium (Cd), a major pollutant capable of causing severe health issues as it accumulates in the food chain. We present a summary of proteomics and metabolomics works that contributed to a better understanding of the molecular aspects involved in the plant response to Cd. This work allowed us to provide a finer picture of general signaling, regulatory and metabolic pathways that appeared to be affected upon Cd stress. In particular, we conclude on the advantage of employing different approaches of global proteome- and metabolome-wide techniques, combined with more targeted analysis to answer molecular questions and unravel biological networks. Finally, we propose possible directions and methodologies for future prospectives in this field, as many aspects of the plant-Cd interaction remain to be discovered.

Journal ArticleDOI
TL;DR: MassChroQ as mentioned in this paper performs LC-MS data alignment and peptide quantification by peak area integration on extracted ion chromatograms and is suitable for quantification with or without labeling and is not limited to high-resolution systems.
Abstract: Recently, many software tools have been developed to perform quantification in LC-MS analyses. However, most of them are specific to either a quantification strategy (e.g. label-free or isotopic labelling) or a mass-spectrometry system (e.g. high or low resolution). In this context, we have developed MassChroQ (Mass Chromatogram Quantification), a versatile software that performs LC-MS data alignment and peptide quantification by peak area integration on extracted ion chromatograms. MassChroQ is suitable for quantification with or without labelling and is not limited to high-resolution systems. Peptides of interest (for example all the identified peptides) can be determined automatically, or manually by providing targeted m/z and retention time values. It can handle large experiments that include protein or peptide fractionation (as SDS-PAGE, 2-D LC). It is fully configurable. Every processing step is traceable, the produced data are in open standard formats and its modularity allows easy integration into proteomic pipelines. The output results are ready for use in statistical analyses. Evaluation of MassChroQ on complex label-free data obtained from low and high-resolution mass spectrometers showed low CVs for technical reproducibility (1.4%) and high coefficients of correlation to protein quantity (0.98). MassChroQ is freely available under the GNU General Public Licence v3.0 at http://pappso.inra.fr/bioinfo/masschroq/.

Journal ArticleDOI
TL;DR: An improved Phos‐tag SDS‐PAGE is described using a dizinc(II) complex of Phos•tag acrylamide in conjunction with a Bis‐tris‐buffered neutral‐pH gel system to detect shifts in the mobility of phosphoproteins.
Abstract: We describe an improved Phos-tag SDS-PAGE (Zn(2+)-Phos-tag SDS-PAGE) using a dizinc(II) complex of Phos-tag acrylamide in conjunction with a Bis-tris-buffered neutral-pH gel system to detect shifts in the mobility of phosphoproteins. An existing technique (Mn(2+)-Phos-tag SDS-PAGE) using a polyacrylamide-bound Mn(2+)-Phos-tag and a conventional Laemmli's buffer system under alkaline pH conditions has limitations for separating certain phosphoproteins. The major improvements were demonstrated by visualizing novel up-shifted bands of commercially available pepsin, recombinant Tau treated in vitro with tyrosine kinases, and endogeneous β-catenin in whole-cell lysates. Additionally, the Zn(2+)-Phos-tag SDS-PAGE gels showed better long-term stability than the Mn(2+)-Phos-tag SDS-PAGE gels. We can therefore provide a simple, convenient, and more reliable homemade gel system for phosphate-affinity SDS-PAGE.

Journal ArticleDOI
TL;DR: The Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free and open‐source software pipeline for high‐throughput analysis of proteomics data, designed around the Open Mass Spectrometry Search Algorithm is presented.
Abstract: Here we present the Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free and open-source software pipeline for high-throughput analysis of proteomics data, designed around the Open Mass Spectrometry Search Algorithm. We detail a synergistic set of tools for protein database generation, spectral reduction, peptide false discovery rate analysis, peptide quantitation via isobaric labeling, protein parsimony and protein false discovery rate analysis, and protein quantitation. We strive for maximum ease of use, utilizing graphical user interfaces and working with data files in the original instrument vendor format. Results are stored in plain text comma-separated value files, which are easy to view and manipulate with a text editor or spreadsheet program. We illustrate the operation and efficacy of COMPASS through the use of two LC-MS/MS data sets. The first is a data set of a highly annotated mixture of standard proteins and manually validated contaminants that exhibits the identification workflow. The second is a data set of yeast peptides, labeled with isobaric stable isotope tags and mixed in known ratios, to demonstrate the quantitative workflow. For these two data sets, COMPASS performs equivalently or better than the current de facto standard, the Trans-Proteomic Pipeline.

Journal ArticleDOI
TL;DR: Comparison of mass spectral data to genomic sequences emphasized the validity of peak patterns as taxonomic markers as well as the reproducibility of mass fingerprints within a species.
Abstract: The invention of MALDI-TOF-MS enormously contributed to the understanding of protein chemistry and cell biology. Without this technique proteomics would most likely not be the important discipline it is today. Besides 'true' proteomics, MALDI-TOF-MS was applied for the analysis of microorganisms for their taxonomic characterization from its beginning. This approach has since been developed as a diagnostic tool readily available for routine, high-throughput analysis of microbial isolates from clinical specimens by intact-cell mass spectrometry (ICMS), the direct analysis of whole bacterial cell without a preceding fractionation or separation by chromatography or electrophoresis. ICMS exploits the reproducibility of mass fingerprints for individual bacterial and fungal strains as well as the high similarity of mass fingerprints within a species. Comparison of mass spectral data to genomic sequences emphasized the validity of peak patterns as taxonomic markers. Supported by comprehensive databases, MALDI-TOF-MS-based identification has been widely accepted in clinical laboratories within only a few years.

Journal ArticleDOI
TL;DR: The first global proteomic analyses of highly purified microvesicles derived from human CRC ascites are reported, identifying proteins that might function in tumor progression via disruption of epithelial polarity, migration, invasion, tumor growth, immune modulation, and angiogenesis.
Abstract: The presence of malignant ascites in the peritoneal cavity is a poor prognostic indicator of low survival rate. Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation including malignant ascites. Although recent progress has revealed that microvesicles play multiple roles in tumor progression, the protein composition and the pathological function of malignant ascites-derived microvesicles are still unknown. Here, we report the first global proteomic analyses of highly purified microvesicles derived from human CRC ascites. With 1-D SDS-PAGE and nano-LC-MS/MS analyses, we identified a total of 846 microvesicular proteins from ascites of three CRC patients with high confidence; 384 proteins were identified in at least two patients. We identified proteins that might function in tumor progression via disruption of epithelial polarity, migration, invasion, tumor growth, immune modulation, and angiogenesis. Furthermore, we identified several potential diagnostic markers of CRC including colon-specific surface antigens. Our proteomic analyses will help to elucidate diverse functions of microvesicles in cancer progression and will aid in the development of novel diagnostic tools for CRC.

Journal ArticleDOI
TL;DR: The present review will highlight some of the advantages and disadvantages of pig as a model system for proteomic studies.
Abstract: Of the numerous animal models available for proteomic studies only a small number have been successfully used in understanding human biology. To date, rodents have been widely employed in proteomic and genomic studies but often these models do not truly mimic the relevant human conditions. On the other hand, the pig shows similarity in size, shape and physiology to human and has been used as a major mammalian model for many studies concerning xenotransplantation, cardiovascular diseases, blood dynamics, nutrition, general metabolic functions, digestive-related disorders, respiratory diseases, diabetes, kidney and bladder diseases, organ-specific toxicity, dermatology and neurological sequelae. With the substantially improved knowledge of the structure and function of the pig genome in the last two decades it has been found that this animal shares a high sequence and chromosomal structure homology with humans. Nevertheless, in comparison to other available model organisms, very little work has been devoted to pig proteomics until recently. Keeping this in mind, the present review will highlight some of the advantages and disadvantages of pig as a model system for proteomic studies.

Journal ArticleDOI
Dongli He1, Chao Han1, Jialing Yao, Shihua Shen1, Pingfang Yang1 
TL;DR: Protein profiling in the germinating rice seeds through 1‐DE via LC MS/MS proteomic shotgun strategy indicated that regulation of redox homeostasis and gene expression also play important roles for the rice seed germination, and transcription is unnecessary for the germination.
Abstract: Construction of metabolic and regulatory pathways from proteomic data can contextualize the large-scale data within the overall physiological scheme of an organism. It is an efficient way to predict metabolic phenotype or regulatory style. We did protein profiling in the germinating rice seeds through 1-DE via LC MS/MS proteomic shotgun strategy. In total, 673 proteins were identified, and could be sorted into 14 functional groups. The largest group was metabolism related. The metabolic proteins were integrated into different metabolic pathways to show the style of reserves mobilization and precursor preparation during the germination. Analysis of the regulatory proteins indicated that regulation of redox homeostasis and gene expression also play important roles for the rice seed germination. Although transcription is unnecessary for the germination, it could ensure the rapidity and uniformity of germination. On the contrary, translation with the stored mRNA is required for the germination. This study will help us to further understand the metabolic style, regulation of redox homeostasis, and gene expression during rice seed germination.

Journal ArticleDOI
TL;DR: Which analytical strategies – with a certain high‐throughput potential – may come near this ideal of discriminating between the many conceivable isomeric structures together with the time, effort and sample amount needed for that purpose are examined.
Abstract: The oligosaccharides attached to proteins or lipids are among the most challenging analytical tasks due to their complexity and variety. Knowing the genes and enzymes responsible for their biosynthesis, a large but not unlimited number of different structures and isomers of such glycans can be imagined. Understanding of the biological role of structural variations requires the ability to unambiguously determine the identity and quantity of all glycan species. Here, we examine, which analytical strategies - with a certain high-throughput potential - may come near this ideal. After an expose of the relevant techniques, we try to depict how analytical raw data are translated into structural assignments using retention times, mass and fragment spectra. A method's ability to discriminate between the many conceivable isomeric structures together with the time, effort and sample amount needed for that purpose is suggested as a criterion for the comparative assessment of approaches and their evolutionary stages.

Journal ArticleDOI
TL;DR: In this paper, sperm nuclei were obtained through CTAB treatment and isolated to over 99.9% purity without any tail fragments, acrosome or mitochondria as assessed by optical microscopy and transmission electron microscopy.
Abstract: Generating a catalogue of sperm nuclear proteins is an important first step towards the clarification of the function of the paternal chromatin transmitted to the oocyte upon fertilization. With this goal, sperm nuclei were obtained through CTAB treatment and isolated to over 99.9% purity without any tail fragments, acrosome or mitochondria as assessed by optical microscopy and transmission electron microscopy. The nuclear proteins were extracted and separated in 2-D and 1-D gels and the 2-D spots and 1-D bands were excised and analysed to identify the proteins through LC-MS/MS. With this approach, 403 different proteins have been identified from the isolated sperm nuclei. The most abundant family of proteins identified are the histones, for which several novel members had not been reported previously as present in the spermatogenic cell line or in the human mature spermatozoa. More than half (52.6%) of the proteins had not been detected in the previous human whole sperm cell proteome reports. Of relevance, several chromatin-related proteins, such as zinc fingers and transcription factors, so far not known to be associated with the sperm chromatin, have also been detected. This provides additional information about the nuclear proteins that are potentially relevant for epigenetic marking, proper fertilization and embryo development.

Journal ArticleDOI
TL;DR: This work demonstrates, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium‐complexity sample and compares quantitation performance to various precursor intensity‐ and identification‐based methods.
Abstract: Normalized spectral index quantification was recently presented as an accurate method of label-free quantitation, which improved spectral counting by incorporating the intensities of peptide MS/MS fragment ions into the calculation of protein abundance We present SINQ, a tool implementing this method within the framework of existing analysis software, our freely available central proteomics facilities pipeline (CPFP) We demonstrate, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium-complexity sample In addition, relative quantitation of standard proteins spiked into a complex lysate background and run without pre-fractionation produces accurate results at amounts above 1 fmol on column We compare quantitation performance to various precursor intensity- and identification-based methods, including the normalized spectral abundance factor (NSAF), exponentially modified protein abundance index (emPAI), MaxQuant, and Progenesis LC-MS We anticipate that the SINQ tool will be a useful asset for core facilities and individual laboratories that wish to produce quantitative MS data, but lack the necessary manpower to routinely support more complicated software workflows SINQ is freely available to obtain and use as part of the central proteomics facilities pipeline, which is released under an open-source license

Journal ArticleDOI
TL;DR: While the latter proteins were found to be mainly associated with energy and carbohydrate metabolism, a major proportion of fungal and bacterial proteins appeared to be involved in PTMs and protein turnover and other diverse functions.
Abstract: Environmental proteomics, also referred to as metaproteomics, is an emerging technology to study the structure and function of microbial communities. Here, we applied semi-quantitative label-free proteomics using one-dimensional gel electrophoresis combined with LC-MS/MS and normalized spectral counting together with fluorescence in situ hybridization and confocal laser scanning microscopy to characterize the metaproteome of the lung lichen symbiosis Lobaria pulmonaria. In addition to the myco- and photobiont, L. pulmonaria harbors proteins from a highly diverse prokaryotic community, which is dominated by Proteobacteria and including also Archaea. While fungal proteins are most dominant (75.4% of all assigned spectra), about the same amount of spectra were assigned to prokaryotic proteins (10%) and to the green algal photobiont (9%). While the latter proteins were found to be mainly associated with energy and carbohydrate metabolism, a major proportion of fungal and bacterial proteins appeared to be involved in PTMs and protein turnover and other diverse functions.

Journal ArticleDOI
TL;DR: The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility.
Abstract: Nanoparticle biological activity, biocompatibility and fate can be directly affected by layers of readily adsorbed host proteins in biofluids. Here, we report a study on the interactions between human blood plasma proteins and nanoparticles with a controlled systematic variation of properties using (18)O-labeling and LC-MS-based quantitative proteomics. We developed a novel protocol to both simplify isolation of nanoparticle bound proteins and improve reproducibility. LC-MS analysis identified and quantified 88 human plasma proteins associated with polystyrene nanoparticles consisting of three different surface chemistries and two sizes, as well as, for four different exposure times (for a total of 24 different samples). Quantitative comparison of relative protein abundances was achieved by spiking an (18)O-labeled "universal" reference into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantification across the entire sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive patterns that classified the nanoparticles based on their surface properties and size. In addition, temporal data indicated that the formation of the stable protein corona was at equilibrium within 5 min. The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility.

Journal ArticleDOI
TL;DR: The main aim of this review is to provide a synopsis of findings from the analysis of the secretome taking diabetes, cancer and neurodegenerative diseases as examples.
Abstract: In the strictest sense, the cell secretome (conditioned media) refers to the collection of proteins that contain a signal peptide and are processed via the endoplasmic reticulum and Golgi apparatus through the classical secretion pathway. More generally, the secretome also encompasses proteins shed from the cell surface and intracellular proteins released through non-classical secretion pathway or exosomes. These secreted proteins include numerous enzymes, growth factors, cytokines and hormones or other soluble mediators. They are fundamental in the processes of cell growth, differentiation, invasion and angiogenesis by regulating cell-to-cell and cell-to-extracellular matrix interactions. The main aim of this review is to provide a synopsis of findings from the analysis of the secretome taking diabetes, cancer and neurodegenerative diseases as examples. We will also discuss the preparation of conditioned media and on the main proteomic-based methodological approaches that have been developed for the study of secreted/shed proteins.

Journal ArticleDOI
TL;DR: The use of both label‐free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics and yielded a similar biological response to cold stress despite a disparity in proteins identified.
Abstract: Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress.

Journal ArticleDOI
TL;DR: This review brings together information indicating that such acetylation is widespread and that it is likely to regulate fundamental cellular processes, particularly in proteins involved in transcription, translation, pathways associated with central metabolism and stress responses, and particular acetylated lysine residues.
Abstract: Protein acetylation plays a critical regulatory role in eukaryotes but until recently its significance and function in bacteria and the archaea were obscure. It is now clear, however, that prokaryotes have the capacity to acetylate both the α-amino groups of N-terminal residues and the e-amino groups of lysine side chains. In this review, we bring together information indicating that such acetylation is widespread and that it is likely to regulate fundamental cellular processes. We particularly focus on lysine acetylation, which recent studies show can occur in proteins involved in transcription, translation, pathways associated with central metabolism and stress responses. Intriguingly, specific acetylated lysine residues map to critical regions in the three-dimensional structures of key proteins, e.g. to active sites or to surfaces that dock with other major cellular components. Like phosphorylation, acetylation appears to be an ancient reversible modification that can be present at multiple sites in proteins, thereby potentially producing epigenetic combinatorial complexity. It may be particularly important in regulating central metabolism in prokaryotes due to the requirement for acetyl-CoA and NAD(+) for protein acetyltransferases and Sir2-type deacetylases, respectively.

Journal ArticleDOI
TL;DR: It is shown that the influence of ratio compression and limiting transmission in iTRAQ MS/MS in high‐complexity mixtures (iTRAQ‐labelled lysates) can be partly alleviated using high‐resolution sample fractionation.
Abstract: Application of iTRAQ-based workflows for protein profiling has become widespread. Concomitantly, the idiosyncratic limitations of iTRAQ, such as its tendency to underestimate quantifications, have been studied and recognised. This report shows that the influence of ratio compression and limiting transmission in iTRAQ MS/MS in high-complexity mixtures (iTRAQ-labelled lysates) can be partly alleviated using high-resolution sample fractionation. Here, we also investigate in greater detail the dependency of iTRAQ quantification on the dynamics of online chromatography in low-complexity mixtures (iTRAQ-labelled standards). These findings will allow more efficient strategies to be designed for iTRAQ proteomics, alleviating iTRAQ underestimation and thus facilitating the detection of subtle abundance changes.

Journal ArticleDOI
TL;DR: The challenge of large‐scale quantification of a proteome is discussed, referring to the programme that aims to define the absolute quantity of at least 4000 proteins in the yeast Saccharomyces cerevisiae, based on the well‐established method of stable isotope dilution.
Abstract: In this paper, we discuss the challenge of large-scale quantification of a proteome, referring to our programme that aims to define the absolute quantity, in copies per cell, of at least 4000 proteins in the yeast Saccharomyces cerevisiae. We have based our strategy on the well-established method of stable isotope dilution, generating isotopically labelled peptides using QconCAT technology, in which artificial genes, encoding concatenations of tryptic fragments as surrogate quantification standards, are designed, synthesised de novo and expressed in bacteria using stable isotopically enriched media. A known quantity of QconCAT is then co-digested with analyte proteins and the heavy:light isotopologues are analysed by mass spectrometry to yield absolute quantification. This workflow brings issues of optimal selection of quantotypic peptides, their assembly into QconCATs, expression, purification and deployment.

Journal ArticleDOI
TL;DR: This paper presents a new Probabilistic method for 8-class SS prediction using Conditional Neural Fields (CNFs), a recently-invented probabilistic graphical model that not only models complex relationship between sequence features and SS, but also exploits interdependency among SS types of adjacent residues.
Abstract: Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA.

Journal ArticleDOI
TL;DR: Effects are reported of interaction of water deficits and/or a high‐temperature event during vegetative growth with either of these stress events applied during generative growth (anthesis) in wheat.
Abstract: Increased climatic variability is resulting in an increase of both the frequency and the magnitude of extreme climate events. Therefore, cereals may be exposed to more than one stress event in the growing season, which may ultimately affect crop yield and quality. Here, effects are reported of interaction of water deficits and/or a high-temperature event (32°C) during vegetative growth (terminal spikelet) with either of these stress events applied during generative growth (anthesis) in wheat. Influence of combinations of stress on protein fractions (albumins, globulins, gliadins and glutenins) in grains and stress-induced changes on the albumin and gliadin proteomes were investigated by 2-DE and MS. The synthesis of individual protein fractions was shown to be affected by both the type and time of the applied stresses. Identified drought or high-temperature-responsive proteins included proteins involved in primary metabolism, storage and stress response such as late embryogenesis abundant proteins, peroxiredoxins and α-amylase/trypsin inhibitors. Several proteins, e.g. heat shock protein and 14-3-3 protein changed in abundance only under multiple high temperatures.