scispace - formally typeset
Search or ask a question

Showing papers in "Stem Cells in 2009"


Journal ArticleDOI
TL;DR: The existence of gastric CSCs is identified from a panel of human gastric cancer cell lines using cell surface marker CD44 and these cells showed the stem cell properties of self‐renewal and the ability to form differentiated progeny and gave rise to CD44(−) cells.
Abstract: Cancer stem cells (CSCs) have been defined as a unique subpopulation in tumors that possess the ability to initiate tumor growth and sustain tumor self-renewal. Although the evidence has been provided to support the existence of CSCs in various solid tumors, the identity of gastric CSCs has not been reported. In this study, we have identified gastric cancer-initiating cells from a panel of human gastric cancer cell lines using cell surface marker CD44. Among six gastric cancer cell lines, three lines MKN-45, MKN-74, and NCI-N87 had a sizeable subpopulation of CD44(+) cells, and these cells showed spheroid colony formation in serum-free media in vitro as well as tumorigenic ability when injected into stomach and skin of severe combined immunodeficient (SCID) mice in vivo. The CD44(+) gastric cancer cells showed the stem cell properties of self-renewal and the ability to form differentiated progeny and gave rise to CD44(−) cells. CD44 knockdown by short hairpin RNA resulted in much reduced spheroid colony formation and smaller tumor production in SCID mice, and the CD44(−) populations had significantly reduced tumorigenic ability in vitro and in vivo. Other potential CSC markers, such as CD24, CD133, CD166, stage-specific embryonic antigen-1 (SSEA-1), and SSEA-4, or sorting for side population did not show any correlation with tumorigenicity in vitro or in vivo. The CD44(+) gastric cancer cells showed increased resistance for chemotherapy- or radiation-induced cell death. These results support the existence of gastric CSCs and may provide novel approaches to the diagnosis and treatment of gastric cancer.

915 citations


Journal ArticleDOI
TL;DR: Using a single lentiviral vector expressing a “stem cell cassette” composed of the four transcription factors and a combination of 2A peptide and internal ribosome entry site technology achieves the most efficient reprogramming system to date and allows derivation of iPS cells with a single viral integration.
Abstract: Induced pluripotent stem (iPS) cells can be generated using retroviral vectors expressing Oct4, Klf4, Sox2, and cMyc. Most prior studies have required multiple retroviral vectors for reprogramming, resulting in high numbers of genomic integrations in iPS cells and limiting their use for therapeutic applications. Here we describe the use of a single lentiviral vector expressing a "stem cell cassette" composed of the four transcription factors and a combination of 2A peptide and internal ribosome entry site technology, generating iPS cells from postnatal fibroblasts. iPS cells generated in this manner display embryonic stem cell-like morphology, express stem cell markers, and exhibit in vivo pluripotency, as evidenced by their ability to differentiate in teratoma assays and their robust contribution to mouse chimeras. Combining all factors into a single transcript achieves the most efficient reprogramming system to date and allows derivation of iPS cells with a single viral integration. The use of a single lentiviral vector for reprogramming represents a powerful laboratory tool and a significant step toward the application of iPS technology for clinical purposes.

697 citations


Journal ArticleDOI
TL;DR: It is demonstrated that elegant cooperative modulation of gene regulation mediated by Snail and Slug is critical for a cancer cell to acquire stem cell characteristics toward resisting radiotherapy‐ or chemotherapy‐mediated cellular stress, and this may be a determinative aspect of aggressive cancer metastases.
Abstract: The transcriptional repressors Snail and Slug contribute to cancer progression by mediating epithelial-mesenchymal transition (EMT), which results in tumor cell invasion and metastases. We extend this current understanding to demonstrate their involvement in the development of resistance to radiation and paclitaxel. The process is orchestrated through the acquisition of a novel subset of gene targets that is repressed under conditions of stress, effectively inactivating p53-mediated apoptosis, while another subset of targets continues to mediate EMT. Repressive activities are complemented by a concurrent derepression of specific genes resulting in the acquisition of stem cell-like characteristics. Such cells are bestowed with three critical capabilities, namely EMT, resistance to p53-mediated apoptosis, and a self-renewal program, that together define the functionality and survival of metastatic cancer stem cells. EMT provides a mechanism of escape to a new, less adverse niche; resistance to apoptosis ensures cell survival in conditions of stress in the primary tumor; whereas acquisition of "stemness" ensures generation of the critical tumor mass required for progression of micrometastases to macrometastases. Our findings, besides achieving considerable expansion of the inventory of direct genes targets, more importantly demonstrate that such elegant cooperative modulation of gene regulation mediated by Snail and Slug is critical for a cancer cell to acquire stem cell characteristics toward resisting radiotherapy- or chemotherapy-mediated cellular stress, and this may be a determinative aspect of aggressive cancer metastases.

584 citations


Journal ArticleDOI
TL;DR: Conditions under which MSC tropism and selective engraftment in sites of inflammation can be monitored by bioluminescent imaging are identified and consistent findings were independent of tumor type, immunocompetence, and route of MSC delivery.
Abstract: Multipotent mesenchymal stromal/stem cells (MSC) have shown potential clinical utility. However, previous assessments of MSC behavior in recipients have relied on visual detection in host tissue following sacrifice, failing to monitor in vivo MSC dispersion in a single animal and limiting the number of variables that can be observed concurrently. In this study, we used noninvasive, in vivo bioluminescent imaging to determine conditions under which MSC selectively engraft in sites of inflammation. MSC modified to express firefly luciferase (ffLuc-MSC) were injected into healthy mice or mice bearing inflammatory insults, and MSC localization was followed with bioluminescent imaging. The inflammatory insults investigated included cutaneous needle-stick and surgical incision wounds, as well as xenogeneic and syngeneic tumors. We also compared tumor models in which MSC were i.v. or i.p. delivered. Our results demonstrate that ffLuc-expressing human MSC (hMSC) systemically delivered to nontumor-bearing animals initially reside in the lungs, then egress to the liver and spleen, and decrease in signal over time. However, hMSC in wounded mice engraft and remain detectable only at injured sites. Similarly, in syngeneic and xenogeneic breast carcinoma-bearing mice, bioluminescent detection of systemically delivered MSC revealed persistent, specific colocalization with sites of tumor development. This pattern of tropism was also observed in an ovarian tumor model in which MSC were i.p. injected. In this study, we identified conditions under which MSC tropism and selective engraftment in sites of inflammation can be monitored by bioluminescent imaging over time. Importantly, these consistent findings were independent of tumor type, immunocompetence, and route of MSC delivery.

581 citations


Journal ArticleDOI
TL;DR: Silencing SOX2 in freshly derived glioblastoma tumor‐initiating cells (TICs) indicates that these cells, despite the many mutations they have accumulated, stop proliferating and lose tumorigenicity in immunodeficient mice.
Abstract: Glioblastoma, the most aggressive cerebral tumor, is invariably lethal. Glioblastoma cells express several genes typical of normal neural stem cells. One of them, SOX2, is a master gene involved in sustaining self-renewal of several stem cells, in particular neural stem cells. To investigate its role in the aberrant growth of glioblastoma, we silenced SOX2 in freshly derived glioblastoma tumor-initiating cells (TICs). Our results indicate that SOX2 silenced glioblastoma TICs, despite the many mutations they have accumulated, stop proliferating and lose tumorigenicity in immunodeficient mice. SOX2 is then also fundamental for maintenance of the self-renewal capacity of neural stem cells when they have acquired cancer properties. SOX2, or its immediate downstream effectors, would then be an ideal target for glioblastoma therapy.

551 citations


Journal ArticleDOI
TL;DR: It is concluded that adenoviral vectors can reprogram human fibroblasts to pluripotent stem cells for use in individualized cell therapy without the risk for viral or oncogene incorporation.
Abstract: Mouse and human fibroblasts have been transformed into induced pluripotent stem (iPS) cells by retroviral transduction or plasmid transfection with four genes. Unfortunately, viral and plasmid DNA incorporation into chromosomes can lead to disruption of gene transcription and malignant transformation. Tumor formation has been found in offspring of mice generated from blastocysts made mosaic with iPS cells. To proceed with iPS cells for human therapy, reprogramming should be done with transient gene expression. Recently, adenoviral vectors have been used to produce mouse iPS cells without viral integration. Here, we report the successful creation of human iPS cells from embryonic fibroblasts using adenoviral vectors expressing c-Myc, Klf4, Oct4, and Sox2. After screening 12 colonies, three stable iPS cell lines were established. Each cell line showed human embryonic stem cell morphology and surface markers. Southern blots and polymerase chain reaction demonstrated that there was no viral DNA integration into iPS cells. Fingerprinting and karyotype analysis confirmed that these iPS cell lines are derived from the parent human fibroblasts. The three human iPS cell lines can differentiate to all three germ layers in vitro, including dopaminergic neurons. After s.c. injection into nonobese diabetic-severe combined immunodeficient mice, each human iPS line produced teratomas within 5 weeks postimplantation. We conclude that adenoviral vectors can reprogram human fibroblasts to pluripotent stem cells for use in individualized cell therapy without the risk for viral or oncogene incorporation.

537 citations


Journal ArticleDOI
TL;DR: It is reported that impairment of bone marrow mesenchymal stem cells and their associated osteoblastic niche deficiency contribute in part to the pathogenesis of SLE‐like disease in MRL/lpr mice.
Abstract: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that, despite the advances in immunosuppressive medical therapies, remains potentially fatal in some patients, especially in treatment-refractory patients. Here, we reported that impairment of bone marrow mesenchymal stem cells (BMMSCs) and their associated osteoblastic niche deficiency contribute in part to the pathogenesis of SLE-like disease in MRL/lpr mice. Interestingly, allogenic BMMSC transplantation (MSCT) is capable of reconstructing the bone marrow osteoblastic niche and more effectively reverses multiorgan dysfunction when compared with medical immunosuppression with cyclophosphamide (CTX). At the cellular level, MSCT, not CTX treatment, was capable to induce osteoblastic niche reconstruction, possibly contributing to the recovery of regulatory T-cells and reestablishment of the immune homeostasis. On the basis of the promising clinical outcomes in SLE mice, we treated four CTX/glucocorticoid treatment-refractory SLE patients using allogenic MSCT and showed a stable 12-18 months disease remission in all treated patients. The patients benefited an amelioration of disease activity, improvement in serologic markers and renal function. These early evidences suggest that allogenic MSCT may be a feasible and safe salvage therapy in refractory SLE patients.

535 citations


Journal ArticleDOI
TL;DR: Bone marrow‐derived mesenchymal stem cells (MSCs) hold great promise for treating immune disorders because of their immunoregulatory capacity, but the mechanism remains controversial, as it is shown here, the mechanism of MSC‐mediated immunosuppression varies among different species.
Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) hold great promise for treating immune disorders because of their immunoregulatory capacity, but the mechanism remains controversial. As we show here, the mechanism of MSC-mediated immunosuppression varies among different species. Immunosuppression by human- or monkey-derived MSCs is mediated by indoleamine 2,3-dioxygenase (IDO), whereas mouse MSCs utilize nitric oxide, under the same culture conditions. When the expression of IDO and inducible nitric oxide synthase (iNOS) were examined in human and mouse MSCs after stimulation with their respective inflammatory cytokines, we found that human MSCs expressed extremely high levels of IDO, and very low levels of iNOS, whereas mouse MSCs expressed abundant iNOS and very little IDO. Immunosuppression by human MSCs was not intrinsic, but was induced by inflammatory cytokines and was chemokine-dependent, as it is in mouse. These findings provide critical information about the immunosuppression of MSCs and for better application of MSCs in treating immune disorders.

514 citations


Journal ArticleDOI
TL;DR: Although several issues remain to be resolved before iPSC‐derived blood cells can be administered to humans for therapeutic purposes, patient‐specific iPSCs can already be used for characterization of mechanisms of blood diseases and for identification of molecules that can correct affected genetic networks.
Abstract: Induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity for modeling of human diseases in vitro, as well as for developing novel approaches for regenerative therapy based on immunologically compatible cells. In this study, we employed an OP9 differentiation system to characterize the hematopoietic and endothelial differentiation potential of seven human iPSC lines obtained from human fetal, neonatal, and adult fibroblasts through reprogramming with POU5F1, SOX2, NANOG, and LIN28 and compared it with the differentiation potential of five human embryonic stem cell lines (hESC, H1, H7, H9, H13, and H14). Similar to hESCs, all iPSCs generated CD34(+)CD43(+) hematopoietic progenitors and CD31(+)CD43(-) endothelial cells in coculture with OP9. When cultured in semisolid media in the presence of hematopoietic growth factors, iPSC-derived primitive blood cells formed all types of hematopoietic colonies, including GEMM colony-forming cells. Human induced pluripotent cells (hiPSCs)-derived CD43(+) cells could be separated into the following phenotypically defined subsets of primitive hematopoietic cells: CD43(+)CD235a(+)CD41a(+/-) (erythro-megakaryopoietic), lin(-)CD34(+)CD43(+)CD45(-) (multipotent), and lin(-)CD34(+)CD43(+)CD45(+) (myeloid-skewed) cells. Although we observed some variations in the efficiency of hematopoietic differentiation between different hiPSCs, the pattern of differentiation was very similar in all seven tested lines obtained through reprogramming of human fetal, neonatal, or adult fibroblasts with three or four genes. Although several issues remain to be resolved before iPSC-derived blood cells can be administered to humans for therapeutic purposes, patient-specific iPSCs can already be used for characterization of mechanisms of blood diseases and for identification of molecules that can correct affected genetic networks.

500 citations


Journal ArticleDOI
TL;DR: The dynamic migration of transplanted MSC to the fracture site, their contributions to the repair process initiation, and their role in modulating the injury‐related inflammatory responses are determined.
Abstract: Mesenchymal stem cells (MSC) have a therapeutic potential in patients with fractures to reduce the time of healing and treat nonunions. The use of MSC to treat fractures is attractive for several reasons. First, MSCs would be implementing conventional reparative process that seems to be defective or protracted. Secondly, the effects of MSCs treatment would be needed only for relatively brief duration of reparation. However, an integrated approach to define the multiple regenerative contributions of MSC to the fracture repair process is necessary before clinical trials are initiated. In this study, using a stabilized tibia fracture mouse model, we determined the dynamic migration of transplanted MSC to the fracture site, their contributions to the repair process initiation, and their role in modulating the injury-related inflammatory responses. Using MSC expressing luciferase, we determined by bioluminescence imaging that the MSC migration at the fracture site is time- and dose-dependent and, it is exclusively CXCR4-dependent. MSC improved the fracture healing affecting the callus biomechanical properties and such improvement correlated with an increase in cartilage and bone content, and changes in callus morphology as determined by micro-computed tomography and histological studies. Transplanting CMV-Cre-R26R-Lac Z-MSC, we found that MSCs engrafted within the callus endosteal niche. Using MSCs from BMP-2-Lac Z mice genetically modified using a bacterial artificial chromosome system to be beta-gal reporters for bone morphogenic protein 2 (BMP-2) expression, we found that MSCs contributed to the callus initiation by expressing BMP-2. The knowledge of the multiple MSC regenerative abilities in fracture healing will allow design of novel MSC-based therapies to treat fractures.

493 citations


Journal ArticleDOI
TL;DR: Long‐term data showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC‐RPE transplantation, suggesting that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases.
Abstract: Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early-onset blindness. Here we show long-term functional rescue using hESC-derived RPE in both the RCS rat and Elov14 mouse, which are animal models of retinal degeneration and Stargardt, respectively. Good Manufacturing Practice-compliant hESC-RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose-dependent fashion without teratoma formation or untoward pathological reactions. Near-normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice-compliant study was carried out in the NIH III immune-deficient mouse model. Long-term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC-RPE transplantation. These results suggest that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases.

Journal ArticleDOI
TL;DR: PHPL was found to be the most suitable FBS substitute in clinical scale BM‐MSC expansion and quality and functionality including cell surface marker expression, adipogenic and osteogenic differentiation, and immunosuppressive action were similar in MSCs from all culture conditions.
Abstract: Mesenchymal stromal cells (MSCs) are promising candidates for novel cell therapeutic applications. For clinical scale manufacturing, human factors from serum or platelets have been suggested as alternatives to fetal bovine serum (FBS). We have previously shown that pooled human serum (HS) and thrombin-activated platelet releasate in plasma (tPRP) support the expansion of adipose tissue-derived MSCs. Contradictory results with bone marrow (BM)-derived MSCs have initiated a comprehensive comparison of HS, tPRP, and pooled human platelet lysate (pHPL) and FBS in terms of their impact on MSC isolation, expansion, differentiation, and immunomodulatory activity. In addition to conventional Ficoll density gradient centrifugation, depletion of lineage marker expressing cells (RosetteSep) and CD271+ sorting were used for BM-MSC enrichment. Cells were cultured in medium containing either 10% FBS, HS, tPRP, or pHPL. Colony-forming units and cumulative population doublings were determined, and MSCs were maximally expanded. Although both HS and tPRP comparable to FBS supported isolation and expansion, pHPL significantly accelerated BM-MSC proliferation to yield clinically relevant numbers within the first two passages. MSC quality and functionality including cell surface marker expression, adipogenic and osteogenic differentiation, and immunosuppressive action were similar in MSCs from all culture conditions. Importantly, spontaneous cell transformation was not observed in any of the culture conditions. Telomerase activity was not detected in any of the cultures at any passage. In contrast to previous data from adipose tissue-derived MSCs, pHPL was found to be the most suitable FBS substitute in clinical scale BM-MSC expansion. STEM CELLS 2009;27:2331–2341

Journal ArticleDOI
TL;DR: The links between pluripotency and tumorigenicity are explored and IPSC are predicted to possess tumorigenic potential equal to or greater than that of ESC, perhaps the most promising modality for future patient‐specific regenerative medicine therapies.
Abstract: Many of the earliest stem cell studies were conducted on cells isolated from tumors rather than from embryos. Of particular interest was research on embryonic carcinoma cells (EC), a type of stem cell derived from teratocarcinoma. The EC research laid the foundation for the later discovery of and subsequent work on embryonic stem cells (ESC). Both ESC isolated from the mouse (mESC) and then later from humans (hESC) shared not only pluripotency with their EC cousins, but also robust tumorigenicity as each readily form teratoma. Surprisingly, decades after the discovery of mESC, the question of what drives ESC to form tumors remains largely an open one. This gap in the field is particularly serious as stem cell tumorigenicity represents the key obstacle to the safe use of stem cell-based regenerative medicine therapies. Although some adult stem cell therapies appear to be safe, they have only a very narrow range of uses in human disease. Our understanding of the tumorigenicity of human induced pluripotent stem cells (IPSC), perhaps the most promising modality for future patient-specific regenerative medicine therapies, is rudimentary. However, IPSC are predicted to possess tumorigenic potential equal to or greater than that of ESC. Here, the links between pluripotency and tumorigenicity are explored. New methods for more accurately testing the tumorigenic potential of IPSC and of other stem cells applicable to regenerative medicine are proposed. Finally, the most promising emerging approaches for overcoming the challenges of stem cell tumorigenicity are highlighted.

Journal ArticleDOI
TL;DR: Treatment of putative glioblastoma stem cells with two chemically distinct small molecule inhibitors of STAT3 DNA‐binding inhibits cell proliferation and the formation of new neurospheres from single cells, suggesting that STAT3 regulates the growth and self‐renewal of GBM‐SCs and is thus a potential target for cancer stem cell‐directed therapy of gliOBlastoma multiforme.
Abstract: Signal transducer and activator of transcription 3 (STAT3) regulates diverse cellular processes, including cell growth, differentiation, and apoptosis, and is frequently activated during tumorigenesis. Recently, putative glioblastoma stem cells (GBM-SCs) were isolated and characterized. These cells can self-renew indefinitely in culture, are highly tumorigenic, and retain the ability to differentiate in culture. We have found that treatment of GBM-SCs with two chemically distinct small molecule inhibitors of STAT3 DNA-binding inhibits cell proliferation and the formation of new neurospheres from single cells. Genetic knockdown of STAT3 using a short hairpin RNA also inhibits GBM-SC proliferation and neurosphere formation, confirming that these effects are specific to STAT3. Although STAT3 inhibition can induce apoptosis in serum-derived GBM cell lines, this effect was not observed in GBM-SCs grown in stem cell medium. Markers of neural stem cell multipotency also decrease upon STAT3 inhibition, suggesting that STAT3 is required for maintenance of the stem-like characteristics of these cells. Strikingly, even a transient inhibition of STAT3 leads to irreversible growth arrest and inhibition of neurosphere formation. These data suggest that STAT3 regulates the growth and self-renewal of GBM-SCs and is thus a potential target for cancer stem cell-directed therapy of glioblastoma multiforme.

Journal ArticleDOI
TL;DR: Using an in vivo serial transplantation model, it is shown that primary uncultured human ovarian tumors can be reliably propagated in NOD/SCID mice, generating heterogeneous tumors that maintain the histological integrity of the parental tumor.
Abstract: Evidence is accumulating that solid tumors contain a rare phenotypically distinct population of cells, termed cancer stem cells (CSC), which give rise to and maintain the bulk of the tumor. These CSC are thought to be resistant to current chemotherapeutic strategies due to their intrinsic stem-like properties and thus may provide the principal driving force behind recurrent tumor growth. Given the high frequency of recurrent metastasis associated with human ovarian cancer, we sought to determine whether primary human ovarian tumors contain populations of cells with enhanced tumor-initiating capacity, a characteristic of CSC. Using an in vivo serial transplantation model, we show that primary uncultured human ovarian tumors can be reliably propagated in NOD/SCID mice, generating heterogeneous tumors that maintain the histological integrity of the parental tumor. The observed frequency of tumor engraftment suggests only certain subpopulations of ovarian tumor cells have the capacity to recapitulate tumor growth. Further profiling of human ovarian tumors for expression of candidate CSC surface markers indicated consistent expression of CD133. To determine whether CD133 expression could define a tumor-initiating cell population in primary human ovarian tumors, fluorescence-activated cell sorting (FACS) methods were employed. Injection of sorted CD133(+) and CD133(-) cell populations into NOD/SCID mice established that tumor-derived CD133(+) cells have an increased tumorigenic capacity and are capable of recapitulating the original heterogeneous tumor. Our data indicate that CD133 expression defines a NOD/SCID tumor initiating subpopulation of cells in human ovarian cancer that may be an important target for new chemotherapeutic strategies aimed at eliminating ovarian cancer.

Journal ArticleDOI
TL;DR: iPSCs generated using Oct4, Sox2, Nanog, and Lin28 can spontaneously differentiate into RPE cells, which can then be isolated and cultured to form highly differentiated RPE monolayers, and further supports the finding that iPSCs are similar to hESCs in their differentiation potential.
Abstract: Human induced pluripotent stem cells (iPSCs) have great promise for cellular therapy, but it is unclear if they have the same potential as human embryonic stem cells (hESCs) to differentiate into specialized cell types. Ocular cells such as the retinal pigmented epithelium (RPE) are of particular interest because they could be used to treat degenerative eye diseases, including age-related macular degeneration and retinitis pigmentosa. We show here that iPSCs generated using Oct4, Sox2, Nanog, and Lin28 can spontaneously differentiate into RPE cells, which can then be isolated and cultured to form highly differentiated RPE monolayers. RPE derived from iPSCs (iPS-RPE) were analyzed with respect to gene expression, protein expression, and rod outer segment phagocytosis, and compared with cultured fetal human RPE (fRPE) and RPE derived from hESCs (hESC-RPE). iPS-RPE expression of marker mRNAs was quantitatively similar to that of fRPE and hESC-RPE, and marker proteins were appropriately expressed and localized in polarized monolayers. Levels of rod outer segment phagocytosis by iPS-RPE, fRPE, and hESC-RPE were likewise similar and dependent on integrin αvβ5. This work shows that iPSCs can differentiate into functional RPE that are quantitatively similar to fRPE and hESC-RPE and further supports the finding that iPSCs are similar to hESCs in their differentiation potential. STEM CELLS 2009;27:2427–2434

Journal ArticleDOI
TL;DR: It is shown that intravenous administration of adipose‐derived MSCs (ASCs) before disease onset significantly reduces the severity of EAE by immune modulation and decreases spinal cord inflammation and demyelination and overall, the data suggest that ASCs represent a valuable tool for stem cell–based therapy in chronic inflammatory diseases of the CNS.
Abstract: Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for neurological autoimmune diseases; previous studies have shown that treatment with bone marrow-derived MSCs induces immune modulation and reduces disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Here we show that intravenous administration of adipose-derived MSCs (ASCs) before disease onset significantly reduces the severity of EAE by immune modulation and decreases spinal cord inflammation and demyelination. ASCs preferentially home into lymphoid organs but also migrates inside the central nervous system (CNS). Most importantly, administration of ASCs in chronic established EAE significantly ameliorates the disease course and reduces both demyelination and axonal loss, and induces a Th2-type cytokine shift in T cells. Interestingly, a relevant subset of ASCs expresses activated alpha 4 integrins and adheres to inflamed brain venules in intravital microscopy experiments. Bioluminescence imaging shows that alpha 4 integrins control ASC accumulation in inflamed CNS. Importantly, we found that ASC cultures produce basic fibroblast growth factor, brain-derived growth factor, and platelet-derived growth factor-AB. Moreover, ASC infiltration within demyelinated areas is accompanied by increased number of endogenous oligodendrocyte progenitors. In conclusion, we show that ASCs have clear therapeutic potential by a bimodal mechanism, by suppressing the autoimmune response in early phases of disease as well as by inducing local neuroregeneration by endogenous progenitors in animals with established disease. Overall, our data suggest that ASCs represent a valuable tool for stem cell-based therapy in chronic inflammatory diseases of the CNS.

Journal ArticleDOI
TL;DR: These findings demonstrate the feasibility of using iPS‐derived motor neuron progenitors and motor neurons in regenerative medicine applications and in vitro modeling of motor neuron diseases.
Abstract: The potential for directed differentiation of human-induced pluripotent stem (iPS) cells to functional postmitotic neuronal phenotypes is unknown. Following methods shown to be effective at generating motor neurons from human embryonic stem cells (hESCs), we found that once specified to a neural lineage, human iPS cells could be differentiated to form motor neurons with a similar efficiency as hESCs. Human iPS-derived cells appeared to follow a normal developmental progression associated with motor neuron formation and possessed prototypical electrophysiological properties. This is the first demonstration that human iPS-derived cells are able to generate electrically active motor neurons. These findings demonstrate the feasibility of using iPS-derived motor neuron progenitors and motor neurons in regenerative medicine applications and in vitro modeling of motor neuron diseases.

Journal ArticleDOI
TL;DR: The data are the first to demonstrate that the role of miR‐21 in the adipogenic differentiation of hASCs is mediated through the modulation of TGF‐β signaling, which may underlie the development of obesity or other metabolic diseases.
Abstract: A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could improve hASCs-based cell therapy and provide new insights into a number of diseases, including obesity. In this study, we examined the roles of microRNA-21 (miR-21) in adipogenic differentiation of hASCs. We found that miR-21 expression was transiently increased after induction of adipogenic differentiation, peaked at 3 days, and returned to the baseline level 8 days. Lentiviral overexpression of miR-21 enhanced adipogenic differentiation. Overexpression of miR-21 decreased both protein and mRNA levels of TGFBR2. The expression of TGFBR2 was decreased during adipogenic differentiation of hASCs in concordance with an increase in the level of miR-21. In contrast, inhibiting miR-21 with 2'-O-methyl-antisense microRNA increased TGFBR2 protein levels in hASCs, accompanied by decreased adipogenic differentiation. The activity of a luciferase construct containing the miR-21 target site from the TGFBR2 3'UTR was lower in LV-miR21-infected hASCs than in LV-miLacZ infected cells. TGF-beta-induced inhibition of adipogenic differentiation was significantly decreased in miR-21 overexpressing cells compared with control lentivirus-transduced cells. RNA interference-mediated downregulation of SMAD3, but not of SMAD2, increased adipogenic differentiation. Overexpression and inhibition of miR-21 altered SMAD3 phosphorylation without affecting total levels of SMAD3 protein. Our data are the first to demonstrate that the role of miR-21 in the adipogenic differentiation of hASCs is mediated through the modulation of TGF-beta signaling. This study improves our knowledge of the molecular mechanisms governing hASCs differentiation, which may underlie the development of obesity or other metabolic diseases.

Journal ArticleDOI
TL;DR: Results demonstrate that NANOG, a cell‐fate regulatory molecule known to be important for ESC self‐renewal, also plays a novel role in tumor development.
Abstract: Tumor development has long been known to resemble abnormal embryogenesis. The embryonic stem cell (ESC) self-renewal gene NANOG is purportedly expressed by some epithelial cancer cells but a causal role in tumor development has remained unclear. Here, we provide compelling evidence that cultured cancer cells, as well as xenograft- and human primary prostate cancer cells express a functional variant of NANOG. NANOG mRNA in cancer cells is derived predominantly from a retrogene locus termed NANOGP8. NANOG protein is detectable in the nucleus of cancer cells and is expressed higher in patient prostate tumors than matched benign tissues. NANOGP8 mRNA and/or NANOG protein levels are enriched in putative cancer stem/progenitor cell populations. Importantly, extensive loss-of-function analysis reveals that RNA interference-mediated NANOG knockdown inhibits tumor development, establishing a functional significance for NANOG expression in cancer cells. Nanog short hairpin RNA transduced cancer cells exhibit decreased long-term clonal and clonogenic growth, reduced proliferation and, in some cases, altered differentiation. Thus, our results demonstrate that NANOG, a cell-fate regulatory molecule known to be important for ESC self-renewal, also plays a novel role in tumor development.

Journal ArticleDOI
TL;DR: It is reported that a specific glycogen synthase kinase 3 (GSK‐3) inhibitor, CHIR99021, can induce the reprogramming of mouse embryonic fibroblasts transduced by only two factors, Oct4 and Klf4.
Abstract: Induced pluripotent stem cell technology has attracted enormous interest for potential application in regenerative medicine. Here, we report that a specific glycogen synthase kinase 3 (GSK-3) inhibitor, CHIR99021, can induce the reprogramming of mouse embryonic fibroblasts transduced by only two factors, Oct4 and Klf4. When combined with Parnate (also named tranylcypromine), an inhibitor of lysine-specific demethylase 1, CHIR99021 can cause the reprogramming of human primary keratinocyte transduced with the two factors, Oct4 and Klf4. To our knowledge, this is the first time that human iPS cells have been generated from somatic cells without exogenous Sox2 expression. Our studies suggest that the GSK-3 inhibitor might have a general application to replace transcription factors in both mouse and human reprogramming. STEM CELLS 2009;27:2992–3000

Journal ArticleDOI
TL;DR: It is concluded that PDGF‐D‐induced acquisition of the EMT phenotype in PC3 cells is, in part, a result of repression of miR‐200 and that any novel strategy by which miR•200 could be upregulated would become a promising approach for the treatment of invasive prostate cancer.
Abstract: MicroRNAs have been implicated in tumor progression. Recent studies have shown that the miR-200 family regulates epithelial-mesenchymal transition (EMT) by targeting zinc-finger E-box binding homeobox 1 (ZEB1) and ZEB2. Emerging evidence from our laboratory and others suggests that the processes of EMT can be triggered by various growth factors, such as transforming growth factor beta and platelet-derived growth factor-D (PDGF-D). Moreover, we recently reported that overexpression of PDGF-D in prostate cancer cells (PC3 PDGF-D cells) leads to the acquisition of the EMT phenotype, and this model offers an opportunity for investigating the molecular interplay between PDGF-D signaling and EMT. Here, we report, for the first time, significant downregulation of the miR-200 family in PC3 PDGF-D cells as well as in PC3 cells exposed to purified active PDGF-D protein, resulting in the upregulation of ZEB1, ZEB2, and Snail2 expression. Interestingly, re-expression of miR-200b in PC3 PDGF-D cells led to reversal of the EMT phenotype, which was associated with the downregulation of ZEB1, ZEB2, and Snail2 expression, and these results were consistent with greater expression levels of epithelial markers. Moreover, transfection of PC3 PDGF-D cells with miR-200b inhibited cell migration and invasion, with concomitant repression of cell adhesion to the culture surface and cell detachment. From these results, we conclude that PDGF-D-induced acquisition of the EMT phenotype in PC3 cells is, in part, a result of repression of miR-200 and that any novel strategy by which miR-200 could be upregulated would become a promising approach for the treatment of invasive prostate cancer.

Journal ArticleDOI
TL;DR: The data indicate that IL6 signaling contributes to glioma malignancy through the promotion of GSC growth and survival, and that targeting IL6 may offer benefit for gliomas patients.
Abstract: Glioblastomas are the most common and most lethal primary brain tumor. Recent studies implicate an important role for a restricted population of neoplastic cells (glioma stem cells (GSCs)) in glioma maintenance and recurrence. We now demonstrate that GSCs preferentially express two interleukin 6 (IL6) receptors: IL6 receptor alpha (IL6R alpha) and glycoprotein 130 (gp130). Targeting IL6R alpha or IL6 ligand expression in GSCs with the use of short hairpin RNAs (shRNAs) significantly reduces growth and neurosphere formation capacity while increasing apoptosis. Perturbation of IL6 signaling in GSCs attenuates signal transducers and activators of transcription three (STAT3) activation, and small molecule inhibitors of STAT3 potently induce GSC apoptosis. These data indicate that STAT3 is a downstream mediator of prosurvival IL6 signals in GSCs. Targeting of IL6R alpha or IL6 expression in GSCs increases the survival of mice bearing intracranial human glioma xenografts. IL6 is clinically significant because elevated IL6 ligand and receptor expression are associated with poor glioma patient survival. The potential utility of anti-IL6 therapies is demonstrated by decreased growth of subcutaneous human GSC-derived xenografts treated with IL6 antibody. Together, our data indicate that IL6 signaling contributes to glioma malignancy through the promotion of GSC growth and survival, and that targeting IL6 may offer benefit for glioma patients.

Journal ArticleDOI
TL;DR: The derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy suggests the potential to derive pluripotent cells from human testisBiopsies but indicates a need for novel strategies to optimize hMGSC culture conditions and reprogramming.
Abstract: Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming.

Journal ArticleDOI
TL;DR: A new role for TLR is defined in MSC immunobiology, which is to augment the immunosuppressive properties of MSC in the absence of IFN‐γ rather than inducing proinflammatory immune response pathways.
Abstract: Mesenchymal stem cells (MSC) display unique suppressive properties on T-cell immunity, thus representing an attractive vehicle for the treatment of conditions associated with harmful T-cell responses such as organ-specific autoimmunity and graft-versus-host disease. Toll-like receptors (TLR) are primarily expressed on antigen-presenting cells and recognize conserved pathogen-derived components. Ligation of TLR activates multiple innate and adaptive immune response pathways to eliminate and protect against invading pathogens. In this work, we show that TLR expressed on human bone marrow-derived MSC enhanced the immunosuppressive phenotype of MSC. Immunosuppression mediated by TLR was dependent on the production of immunosuppressive kynurenines by the tryptophan-degrading enzyme indoleamine-2,3-dioxygenase-1 (IDO1). Induction of IDO1 by TLR involved an autocrine interferon (IFN)-beta signaling loop, which was dependent on protein kinase R (PKR), but independent of IFN-gamma. These data define a new role for TLR in MSC immunobiology, which is to augment the immunosuppressive properties of MSC in the absence of IFN-gamma rather than inducing proinflammatory immune response pathways. PKR and IFN-beta play a central, previously unidentified role in orchestrating the production of immunosuppressive kynurenines by MSC.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the osteogenic potential of mesenchymal stem cells from human fetal bone marrow (hfMSC), human umbilical cord (hUCMSCs), and human adult adipose tissue (hATMSCs) both in monolayer cultures and after loading into three-dimensional polycaprolactone-tricalcium-phosphate scaffolds.
Abstract: Mesenchymal stem cells (MSCs) from human adult bone marrow (haMSCs) represent a promising source for bone tissue engineering. However, their low frequencies and limited proliferation restrict their clinical utility. Alternative postnatal, perinatal, and fetal sources of MSCs appear to have different osteogenic capacities, but have not been systematically compared with haMSCs. We investigated the proliferative and osteogenic potential of MSCs from human fetal bone marrow (hfMSCs), human umbilical cord (hUCMSCs), and human adult adipose tissue (hATMSCs), and haMSCs, both in monolayer cultures and after loading into three-dimensional polycaprolactone-tricalcium-phosphate scaffolds.Although all MSCs had comparable immunophenotypes, only hfMSCs and hUCMSCs were positive for the embryonic pluripotency markers Oct-4 and Nanog. hfMSCs expressed the lowest HLA-I level (55% versus 95%-99%) and the highest Stro-1 level (51% versus 10%-27%), and had the greatest colony-forming unit-fibroblast capacity (1.6x-2.0x; p < .01) and fastest doubling time (32 versus 54-111 hours; p < .01). hfMSCs had the greatest osteogenic capacity, as assessed by von-Kossa staining, alkaline phosphatase activity (5.1x-12.4x; p < .01), calcium deposition (1.6x-2.7x in monolayer and 1.6x-5.0x in scaffold culture; p < .01), calcium visualized on micro-computed tomography (3.9x17.6x; p < .01) and scanning electron microscopy, and osteogenic gene induction. Two months after implantation of cellular scaffolds in immunodeficient mice, hfMSCs resulted in the most robust mineralization (1.8x-13.3x; p < .01).The ontological and anatomical origins of MSCs have profound influences on the proliferative and osteogenic capacity of MSCs. hfMSCs had the most proliferative and osteogenic capacity of the MSC sources, as well as being the least immunogenic, suggesting they are superior candidates for bone tissue engineering.

Journal ArticleDOI
TL;DR: This review focuses on current strategies to differentiate embryonic, mesenchymal(‐like), and liver stem/progenitor cells into hepatocytes in vitro, and some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte‐like cells out of stem/ ProGenitor cells.
Abstract: Stem cells are a unique source of self-renewing cells within the human body Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin The phenomenon of fate reprogrammation and phenotypic diversification remains, though, an enigmatic and rare process Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy In this review, we focus on current strategies to differentiate embryonic, mesenchymal(-like), and liver stem/progenitor cells into hepatocytes in vitro Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells

Journal ArticleDOI
TL;DR: In this paper, it was shown that upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one (UCP1) and CIDEA mRNA.
Abstract: In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one (UCP1) and CIDEA mRNA. This switch is accompanied by an increase in oxygen consumption and uncoupling. The expression of UCP1 protein is associated to stimulation of respiration by beta-AR agonists, including beta3-AR agonist. Thus, hMADS cells represent an invaluable cell model to screen for drugs stimulating the formation and/or the uncoupling capacity of human brown adipocytes that could help to dissipate excess caloric intake of individuals.

Journal ArticleDOI
TL;DR: Results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury.
Abstract: Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2|3|10 5 MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73 1 CD90 1 cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson’s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor b, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and a smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor a mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009; 27:3063–3073

Journal ArticleDOI
TL;DR: Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors.
Abstract: The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation Cardiac function and structure were evaluated by serial echocardiography and histology ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors