scispace - formally typeset
S

Stephen E. Thorsett

Researcher at Willamette University

Publications -  140
Citations -  16101

Stephen E. Thorsett is an academic researcher from Willamette University. The author has contributed to research in topics: Pulsar & Millisecond pulsar. The author has an hindex of 59, co-authored 140 publications receiving 15191 citations. Previous affiliations of Stephen E. Thorsett include University of California, Los Angeles & California Institute of Technology.

Papers
More filters
Journal ArticleDOI

THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

Fiona A. Harrison, +84 more
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Journal ArticleDOI

The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission

TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 - 79 keV.
Journal ArticleDOI

The second fermi large area telescope catalog of gamma-ray pulsars

A. A. Abdo, +257 more
TL;DR: In this article, a catalog of gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite is presented.
Journal ArticleDOI

Long γ-ray bursts and core-collapse supernovae have different environments

TL;DR: In this article, the authors show that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. But they also show that the host galaxies of the long-drone bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae.
Journal ArticleDOI

Detection of the characteristic pion-decay signature in supernova remnants

Markus Ackermann, +200 more
- 15 Feb 2013 - 
TL;DR: The characteristic pion-decay feature is detected in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope, providing direct evidence that cosmic-ray protons are accelerated in SNRs.