scispace - formally typeset
Open AccessJournal ArticleDOI

A comprehensive model of PMOS NBTI degradation

Reads0
Chats0
TLDR
A comprehensive model for NBTI phenomena within the framework of the standard reaction–diffusion model is constructed and it is demonstrated how to solve the reaction-diffusion equations in a way that emphasizes the physical aspects of the degradation process and allows easy generalization of the existing work.
About
This article is published in Microelectronics Reliability.The article was published on 2005-01-01 and is currently open access. It has received 710 citations till now. The article focuses on the topics: Negative-bias temperature instability.

read more

Figures
Citations
More filters
Journal ArticleDOI

Understand NBTI Mechanism by Developing Novel Measurement Techniques

TL;DR: In this paper, a fast OTF interface trap (OFIT) measurement method is developed which is free from interface trap recovery during measurement, which can be considered as free from recovery during measurements.
Proceedings ArticleDOI

Hayat: harnessing dark silicon and variability for aging deceleration and balancing

TL;DR: Experimental evaluation across a range of chips to account for process variations illustrates that the proposed Hayat system can provide a significant aging/performance improvement and decelerates the chip aging by 6 months - 5 years (depending upon the required lifetime constraint) compared to state-of-the-art techniques.
Journal ArticleDOI

Design of Accurate Low-Cost On-Chip Structures for Protecting Integrated Circuits Against Recycling

TL;DR: A suite of solutions, based on lightweight negative bias temperature instability (NBTI)-aware ring oscillators (ROs) for combating die and IC recycling (CDIR) when ICs are used for a very short duration are proposed.
Proceedings ArticleDOI

Minimization of NBTI performance degradation using internal node control

TL;DR: This paper proposes internal node control, in which the inputs to individual gates are directly manipulated to prevent static NBTI fatigue and finds that the problem is NP-complete and presents a linear-time heuristic that can be used to quickly find near-optimal solutions.
Journal ArticleDOI

Border traps and bias-temperature instabilities in MOS devices

TL;DR: An overview of the effects of border traps on device performance and reliability is presented for Si, Ge, SiGe, InGaAs, SiC, GaN, and carbon-based MOS devices that are subjected to bias-temperature stress, with or without exposure to ionizing radiation.
References
More filters
Journal ArticleDOI

Anomalous transit-time dispersion in amorphous solids

TL;DR: In this paper, the authors developed a stochastic transport model for the transient photocurrent, which describes the dynamics of a carrier packet executing a time-dependent random walk in the presence of a field-dependent spatial bias and an absorbing barrier at the sample surface.
Book

The physics of amorphous solids

TL;DR: The formation of amorphous solids Amorphous Morphology: The Geometry and Topology of Disorder Chalcogenide Glasses and Organic Polymers The Percolation Model Localization Delocalization Transitions Optical and Electrical Properties Index as discussed by the authors.
Journal ArticleDOI

Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing

TL;DR: The negative bias temperature instability (NBTI) commonly observed in p-channel metaloxide-semiconductor field effect transistors when stressed with negative gate voltages at elevated temperatures is discussed in this article.
Journal ArticleDOI

Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices

TL;DR: A detailed study of the increase of the number of surface traps in MOS structures after NBS at temperatures (25-125°C) and fields (400-700 MV/m) comparable to those used in MNOS devices is presented in this article.
Journal ArticleDOI

Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon

TL;DR: In this paper, the surface state charge associated with thermally oxidized silicon has been studied experimentally using MOS structures and the results indicate that the surface-state charge can be reproducibly controlled over a range 1010-1012 cm -2, and it is an intrinsic property of the silicon dioxide-silicon system.
Related Papers (5)
Frequently Asked Questions (2)
Q1. What contributions have the authors mentioned in the paper "A comprehensive model of pmos nbti degradation" ?

In this paper, the authors construct a comprehensive model for NBTI phenomena within the framework of the standard reaction–diffusion model. The authors demonstrate how to solve the reaction–diffusion equations in a way that emphasizes the physical aspects of the degradation process and allows easy generalization of the existing work. The authors also augment this basic reaction–diffusion model by including the temperature and field-dependence of the NBTI phenomena so that reliability projections can be made under arbitrary circuit operating conditions. 

One of the key goal of their future work would be to clarify the role of such processing changes on NBTI performance.