scispace - formally typeset
Open AccessJournal ArticleDOI

A comprehensive model of PMOS NBTI degradation

Reads0
Chats0
TLDR
A comprehensive model for NBTI phenomena within the framework of the standard reaction–diffusion model is constructed and it is demonstrated how to solve the reaction-diffusion equations in a way that emphasizes the physical aspects of the degradation process and allows easy generalization of the existing work.
About
This article is published in Microelectronics Reliability.The article was published on 2005-01-01 and is currently open access. It has received 710 citations till now. The article focuses on the topics: Negative-bias temperature instability.

read more

Figures
Citations
More filters
Proceedings ArticleDOI

Rejuvenation of nanoscale logic at NBTI-critical paths using evolutionary TPG

TL;DR: The rejuvenation stimuli are used to drive to the recovery phase the pMOS transistors that are the most significant for the NBTI-induced path delay, which is to be applied to the circuit as an execution overhead at predefined periods.
Book ChapterDOI

Simulation of BTI-Related Time-Dependent Variability in CMOS Circuits

TL;DR: In this subchapter, the different adopted approaches to evaluating BTI in ultrascaled devices are presented, pointing out their pros and cons, and illustrated with examples of BTI effects on several analog and digital circuits.
Proceedings ArticleDOI

Evidence for P b center-hydrogen complexes after subjecting PMOS devices to NBTI stress - A combined DCIV/SDR study

TL;DR: In this article, deep level defects at the Si/SiO 2 interface of 30nm and 5nm SiO 2 PMOS devices after negative bias temperature stress (NBTS) were studied.
Journal ArticleDOI

Effects of pulsed negative bias temperature stressing in p-channel power vdmosfets

TL;DR: In this article, the effects of pulsed bias NBT stressing in p-channel power VDMOSFETs are discussed in terms of the dynamic recovery effects, which are further assesed by varying the duty cycle ratio and frequency of the pulsed stress voltage.
Journal ArticleDOI

New determination method of arbitrary energy distribution of traps in metal–oxide–semiconductor field effect transistor

TL;DR: In this paper, a thermally stimulated voltage recovery (TSVR) method was proposed to investigate traps responsible for the threshold voltage shift (Δ V th ) in gate oxides of metal-oxide-semiconductor field effect transistors (MOSFETs).
References
More filters
Journal ArticleDOI

Anomalous transit-time dispersion in amorphous solids

TL;DR: In this paper, the authors developed a stochastic transport model for the transient photocurrent, which describes the dynamics of a carrier packet executing a time-dependent random walk in the presence of a field-dependent spatial bias and an absorbing barrier at the sample surface.
Book

The physics of amorphous solids

TL;DR: The formation of amorphous solids Amorphous Morphology: The Geometry and Topology of Disorder Chalcogenide Glasses and Organic Polymers The Percolation Model Localization Delocalization Transitions Optical and Electrical Properties Index as discussed by the authors.
Journal ArticleDOI

Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing

TL;DR: The negative bias temperature instability (NBTI) commonly observed in p-channel metaloxide-semiconductor field effect transistors when stressed with negative gate voltages at elevated temperatures is discussed in this article.
Journal ArticleDOI

Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices

TL;DR: A detailed study of the increase of the number of surface traps in MOS structures after NBS at temperatures (25-125°C) and fields (400-700 MV/m) comparable to those used in MNOS devices is presented in this article.
Journal ArticleDOI

Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon

TL;DR: In this paper, the surface state charge associated with thermally oxidized silicon has been studied experimentally using MOS structures and the results indicate that the surface-state charge can be reproducibly controlled over a range 1010-1012 cm -2, and it is an intrinsic property of the silicon dioxide-silicon system.
Related Papers (5)
Frequently Asked Questions (2)
Q1. What contributions have the authors mentioned in the paper "A comprehensive model of pmos nbti degradation" ?

In this paper, the authors construct a comprehensive model for NBTI phenomena within the framework of the standard reaction–diffusion model. The authors demonstrate how to solve the reaction–diffusion equations in a way that emphasizes the physical aspects of the degradation process and allows easy generalization of the existing work. The authors also augment this basic reaction–diffusion model by including the temperature and field-dependence of the NBTI phenomena so that reliability projections can be made under arbitrary circuit operating conditions. 

One of the key goal of their future work would be to clarify the role of such processing changes on NBTI performance.