scispace - formally typeset
Open AccessJournal ArticleDOI

A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

TLDR
This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED), which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data.
Abstract
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.

read more

Citations
More filters
Journal ArticleDOI

The Economics Spectrum Drives Root Trait Strategies in Mediterranean Vegetation

TL;DR: In this article, a database of 320 Mediterranean woody and herbaceous species was used to assess if the classic economics spectrum theory can be broadly extended to roots, and the authors advocate for the need to unify and standardise the criteria and approaches used within the economics framework between leaves and roots, for the sake of theoretical consistency.
Journal ArticleDOI

A global map of root biomass across the world's forests

TL;DR: Huang et al. as discussed by the authors combined 10,307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially-explicit global high-resolution ( ∼ 1 km) root biomass dataset, including fine and coarse roots.
Posted ContentDOI

Testing Finch\'s hypothesis: the role of organismal modularity on the escape from actuarial senescence

TL;DR: A comparative analysis reveals that plant species that are more modular do indeed tend to escape from senescence more often than those that are unitary, and identifies new research directions related to age-dependent mortality factors.
References
More filters
Journal ArticleDOI

World Map of the Köppen-Geiger climate classification updated

TL;DR: A new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century, based on recent data sets from the Climatic Research Unit of the University of East Anglia and the Global Precipitation Climatology Centre at the German Weather Service.
Journal ArticleDOI

The worldwide leaf economics spectrum

TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Journal ArticleDOI

Let the concept of trait be functional

TL;DR: An unambiguous definition of plant trait is given, with a particular emphasis on functional trait, and it is argued that this can be achieved by developing "integration functions" which can be grouped into functional response (community level) and effect (ecosystem level) algorithms.
Journal ArticleDOI

Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail

TL;DR: A framework using concepts and results from community ecology, ecosystem ecology and evolutionary biology to provide a linkage between traits associated with the response of plants to environmental factors and traits that determine effects of plants on ecosystem functions is presented.
Journal ArticleDOI

New handbook for standardised measurement of plant functional traits worldwide

TL;DR: This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties.
Related Papers (5)