scispace - formally typeset
Journal ArticleDOI

A protein interaction network for pluripotency of embryonic stem cells

Reads0
Chats0
TLDR
This tight protein network seems to function as a cellular module dedicated to pluripotency in mouse ES cells, linked to multiple co-repressor pathways and composed of numerous proteins whose encoding genes are putative direct transcriptional targets of its members.
Abstract
Embryonic stem (ES) cells are pluripotent and of therapeutic potential in regenerative medicine. Understanding pluripotency at the molecular level should illuminate fundamental properties of stem cells and the process of cellular reprogramming. Through cell fusion the embryonic cell phenotype can be imposed on somatic cells, a process promoted by the homeodomain protein Nanog, which is central to the maintenance of ES cell pluripotency. Nanog is thought to function in concert with other factors such as Oct4 (ref. 8) and Sox2 (ref. 9) to establish ES cell identity. Here we explore the protein network in which Nanog operates in mouse ES cells. Using affinity purification of Nanog under native conditions followed by mass spectrometry, we have identified physically associated proteins. In an iterative fashion we also identified partners of several Nanog-associated proteins (including Oct4), validated the functional relevance of selected newly identified components and constructed a protein interaction network. The network is highly enriched for nuclear factors that are individually critical for maintenance of the ES cell state and co-regulated on differentiation. The network is linked to multiple co-repressor pathways and is composed of numerous proteins whose encoding genes are putative direct transcriptional targets of its members. This tight protein network seems to function as a cellular module dedicated to pluripotency.

read more

Citations
More filters
Journal ArticleDOI

Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors

TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.
Journal ArticleDOI

Induction of Pluripotent Stem Cells From Adult Human Fibroblasts by Defined Factors

TL;DR: This work generated induced pluripotent stem cells capable of germline transmission from murine somatic cells by transd, and demonstrated the ability of these cells to reprogram into patient-specific and disease-specific stem cells.
Journal ArticleDOI

New cell lines from mouse epiblast share defining features with human embryonic stem cells

TL;DR: It is shown that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper, and interrogated to understand how pluripotent cells generate distinct fates during early development.
Journal ArticleDOI

Nanog safeguards pluripotency and mediates germline development.

TL;DR: By genetic deletion, it is shown that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog, and it is surmised that Nanog stabilizes embryonicstem cells in culture by resisting or reversing alternative gene expression states.
References
More filters
Journal ArticleDOI

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.
Journal ArticleDOI

Establishment in culture of pluripotential cells from mouse embryos

TL;DR: The establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts are reported, able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo.
Journal ArticleDOI

Error and attack tolerance of complex networks

TL;DR: It is found that scale-free networks, which include the World-Wide Web, the Internet, social networks and cells, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates.
Journal ArticleDOI

Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells

TL;DR: In this article, the authors described the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice and demonstrated the pluripotency of these embryonic stem cells by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types.
Journal ArticleDOI

Core transcriptional regulatory circuitry in human embryonic stem cells.

TL;DR: Insight is provided into the transcriptional regulation of stem cells and how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal and how they collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops.
Related Papers (5)