scispace - formally typeset
Open AccessJournal ArticleDOI

A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

Reads0
Chats0
TLDR
A review of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDE, gaps in our current knowledge and the future impacts that AMDE may have on polar environments is presented in this article.
Abstract
It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes has occurred but these processes are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mercury as a Global Pollutant: Sources, Pathways, and Effects

TL;DR: Understanding of sources, atmosphere-land-ocean Hg dynamics and health effects are synthesized, and integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.
Journal ArticleDOI

Global Biogeochemical Cycling of Mercury: A Review

TL;DR: In this paper, the authors studied uncertainty in the global biogeochemical cycle of mercury, including oxidation processes in the atmosphere, land atmosphere and ocean-atmosphere cycling.
Journal ArticleDOI

Atmospheric composition change – global and regional air quality

Paul S. Monks, +68 more
TL;DR: A review of the state of scientific understanding in relation to global and regional air quality is outlined in this article, in terms of emissions, processing and transport of trace gases and aerosols.
Journal ArticleDOI

Heterogeneous photochemistry in the atmosphere.

TL;DR: In short, solar radiation can provide the energy to initiate reactions while atmospherically available surfaces or condensed phases may act to reduce the required energy for a given photochemical pathway, for instance, by allowing a longer wavelength for reaction of species associated with a surface or bulk phase environment.
Journal ArticleDOI

Global atmospheric model for mercury including oxidation by bromine atoms

TL;DR: In this paper, a global 3D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model) was conducted and compared to the previous version of the model with OH and ozone as the sole oxidants, and the results showed that the Hg+ Br model is equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes.
References
More filters
Journal ArticleDOI

Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter

TL;DR: In this paper, a review of existing literature on the subject reveals the existence of at least four such patterns: the North Atlantic and North Pacific Oscillations identified by Walker and Bliss (1932), a zonally symmetric seesaw between sea level pressures in polar and temperature latitudes, first noted by Lorenz (1951), and what we will refer to as the Pacific/North American pattern, which has been known to operational long-range forecasters in this country since the 1950's.
Journal ArticleDOI

Classification, seasonality and persistence of low-frequency atmospheric circulation patterns

TL;DR: In this article, Orthogonally rotated principle component analysis (RPCA) was used to identify and describe the seasonality and persistence of the major modes of interannual variability.
Journal ArticleDOI

Global distribution of perfluorooctane sulfonate in wildlife.

TL;DR: Fish-eating, predatory animals such as mink and bald eagles contained concentrations of PFOS that were greater than the concentrations in their diets, suggesting that PFOS can bioaccumulate to higher trophic levels of the food chain.
Journal ArticleDOI

Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models

TL;DR: In this article, the authors proposed a method for estimating the dry deposition velocities of atmospheric gases in the U.S. and surrounding areas and incorporated it into a revised computer code module for use in numerical models of atmospheric transport and deposition of pollutants over regional scales.
Related Papers (5)