scispace - formally typeset
Journal ArticleDOI

Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?

Kim A. Brogden
- 01 Mar 2005 - 
- Vol. 3, Iss: 3, pp 238-250
TLDR
In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented and several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibits protein synthesis or inhibit enzymatic activity.
Abstract
Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.

read more

Citations
More filters
Journal ArticleDOI

Acinetobacter baumannii: Emergence of a Successful Pathogen

TL;DR: This review details the significant advances that have been made in understanding of this remarkable organism over the last 10 years, including current taxonomy and species identification, issues with susceptibility testing, mechanisms of antibiotic resistance, global epidemiology, clinical impact of infection, host-pathogen interactions, and infection control and therapeutic considerations.
Journal ArticleDOI

Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

TL;DR: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed and ongoing research in this area should result in the development of even better antifouling materials in the future.
Journal ArticleDOI

Peptide Antimicrobial Agents

TL;DR: The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides.
Journal ArticleDOI

Inflammatory bowel disease: cause and immunobiology

TL;DR: How environmental factors, infectious microbes, ethnic origin, genetic susceptibility, and a dysregulated immune system can result in mucosal inflammation are discussed.
Journal ArticleDOI

Designing antimicrobial peptides: form follows function

TL;DR: In this article, advanced computer assisted design strategies that address the difficult problem of relating primary sequence to peptide structure, and are delivering more potent, cost-effective, broad-spectrum peptides as potential next-generation antibiotics.
References
More filters
Journal ArticleDOI

Microcin 25, a novel antimicrobial peptide produced by Escherichia coli.

TL;DR: Microcin 25, a peptide antibiotic excreted by an Escherichia coli strain isolated from human feces, was purified to homogeneity and characterized and appears to interfere with cell division, since susceptible cells filamented when exposed to it.
Journal ArticleDOI

Cell-free immunity in insects

TL;DR: Sequence work shows that at least two of the cecropins originate from a gene duplication, which is a main part of the immune system of the Cecropia moth and several other insects.
Journal ArticleDOI

Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera).

TL;DR: A novel 93-amino acid long, cationic polypeptide, termed hymenoptaecin, which provides wide-spectrum antibacterial protection in vitro by virtue of complementarity rather than synergism.
Journal ArticleDOI

Molecular recognition between membrane-spanning polypeptides

TL;DR: Integral membrane proteins have recently been shown to recognize and interact with other proteins within the membrane, either mimicking or altering their function, and with the lipid bilayer itself, resulting in a reorganization of native membrane protein.
Journal ArticleDOI

Phagocytin: a bactericidal substance from polymorphonuclear leucocytes.

TL;DR: Although phagocytin is reasonably stable at temperatures of 65°C.
Related Papers (5)